Chinese Journal of Chemical Engineering ›› 2018, Vol. 26 ›› Issue (11): 2266-2279.DOI: 10.1016/j.cjche.2018.07.008
• Special issue of Carbon Capture, Utilisation and Storage • 上一篇 下一篇
Jiachen Li1,2,3,4, Liguo Wang1,3,4, Yan Cao1, Chanjuan Zhang1,2,3,4, Peng He1, Huiquan Li1,3,4
收稿日期:
2018-05-31
修回日期:
2018-07-04
出版日期:
2018-11-28
发布日期:
2018-12-10
通讯作者:
Liguo Wang, Huiquan Li
基金资助:
Supported by the National Natural Science Foundation of China (21576272, 21476244), "Transformational Technologies for Clean Energy and Demonstration", Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA 21030600), the project from Jiangsu Collaborative Innovation Center for Ecological Building Materials and Environmental Protection Equipment (YCXT201607), and Youth Innovation Promotion Association (2016046) of CAS.
Jiachen Li1,2,3,4, Liguo Wang1,3,4, Yan Cao1, Chanjuan Zhang1,2,3,4, Peng He1, Huiquan Li1,3,4
Received:
2018-05-31
Revised:
2018-07-04
Online:
2018-11-28
Published:
2018-12-10
Contact:
Liguo Wang, Huiquan Li
Supported by:
Supported by the National Natural Science Foundation of China (21576272, 21476244), "Transformational Technologies for Clean Energy and Demonstration", Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA 21030600), the project from Jiangsu Collaborative Innovation Center for Ecological Building Materials and Environmental Protection Equipment (YCXT201607), and Youth Innovation Promotion Association (2016046) of CAS.
摘要: The chemical utilization of CO2 is a crucial step for the recycling of carbon resource. In recent years, the study on the conversion of CO2 into a wide variety of C2+ important chemicals and fuels has received considerable attention as an emerging technology. Since CO2 is thermodynamically stable and kinetically inert, the effective activation of CO2 molecule for the selective transformation to target products still remains a challenge. The welldesigned CO2 reduction route and efficient catalyst system has imposed the feasibility of CO2 conversion into C2+ chemicals and fuels. In this paper, we have reviewed the recent advances on chemical conversion of CO2 into C2+ chemicals and fuels with wide practical applications, including important alcohols, acetic acid, dimethyl ether, olefins and gasoline. In particular, the synthetic routes for C-C coupling and carbon chain growth, multifunctional catalyst design and reaction mechanisms are exclusively emphasized.
Jiachen Li, Liguo Wang, Yan Cao, Chanjuan Zhang, Peng He, Huiquan Li. Recent advances on the reduction of CO2 to important C2+ oxygenated chemicals and fuels[J]. Chinese Journal of Chemical Engineering, 2018, 26(11): 2266-2279.
Jiachen Li, Liguo Wang, Yan Cao, Chanjuan Zhang, Peng He, Huiquan Li. Recent advances on the reduction of CO2 to important C2+ oxygenated chemicals and fuels[J]. Chin.J.Chem.Eng., 2018, 26(11): 2266-2279.
[1] S. Zhang, Y. Chen, F. Li, X. Lu, W. Dai, R. Mori, Fixation and conversion of CO2 using ionic liquids, Catal. Today 115(2006) 61-69.[2] H. Lund, Renewable energy strategies for sustainable development, Energy 32(2007) 912-919.[3] I. Hadjipaschalis, A. Poullikkas, V. Efthimiou, Overview of current and future energy storage technologies for electric power applications, Renew. Sustain. Energy Rev. 13(2009) 1513-1522.[4] N.L. Panwar, S.C. Kaushik, S. Kothari, Role of renewable energy sources in environmental protection:A review, Renew. Sustain. Energy Rev. 15(2011) 1513-1524.[5] J.J. Wu, X.-D. Zhou, Catalytic conversion of CO2 to value added fuels:Current status, challenges, and future directions, Chin. J. Catal. 37(2016) 999-1015.[6] W.Q. Fan, Q.H. Zhang, Y. Wang, Semiconductor-based nanocomposites for photocatalytic H2 production and CO2 conversion, Phys. Chem. Chem. Phys. 15(2013) 2632-2649.[7] S.J. Xie, Y. Wang, Q.H. Zhang, W.P. Deng, Y. Wang, SrNb2O6 nanoplates as efficient photocatalysts for the preferential reduction of CO2 in the presence of H2O, Chem. Commun. 51(2015) 3430-3433.[8] X.X. Chang, T. Wang, J.L. Gong, CO2 photo-reduction:Insights into CO2 activation and reaction on surfaces of photocatalysts, Energy Environ. Sci. 9(2016) 2177-2196.[9] C.Y. Hao, S.P. Wang, M.S. Li, L.Q. Kang, X.B. Ma, Hydrogenation of CO2 to formic acid on supported ruthenium catalysts, Catal. Today 160(2011) 184-190.[10] J. Li, X. Qi, L. Wang, Y. He, Y. Deng, New attempt for CO2 utilization:One-pot catalytic syntheses of methyl, ethyl and n-butyl carbamates, Catal. Commun. 12(2011) 1224-1227.[11] X.Y. Dou, J.Q. Wang, Y. Du, E. Wang, L.N. He, Guanidinium salt functionalized PEG:An effective and recyclable homogeneous catalyst for the synthesis of cyclic carbonates from CO2 and epoxides under solvent-free conditions, Synlett (2007) 3058-3062.[12] J.Q. Wang, Y.G. Zhang, Boronic acids as hydrogen bond donor catalysts for efficient conversion of CO2 into organic carbonate in water, ACS Catal. 6(2016) 4871-4876.[13] D.H. Lan, N. Fan, Y. Wang, X. Gao, P. Zhang, L. Chen, C.T. Au, S.F. Yin, Recent advances in metal-free catalysts for the synthesis of cyclic carbonates from CO2 and epoxides, Chin. J. Catal. 37(2016) 826-845.[14] S.Y. Zhao, S.P. Wang, Y.J. Zhao, X.B. Ma, An in situ infrared study of dimethyl carbonate synthesis from CO2 and methanol over well-shaped CeO2, Chin. Chem. Lett. 28(2017) 65-69.[15] A.A. Peterson, J.K. Norskov, Activity descriptors for CO2 Electroreduction to methane on transition-metal catalysts, J. Phys. Chem. Lett. 3(2012) 251-258.[16] A. Goeppert, M. Czaun, J.P. Jones, G.K. Surya Prakash, G.A. Olah, Recycling of CO2 to methanol and derived products-closing the loop, Chem. Soc. Rev. 43(2014) 7995-8048.[17] J. Graciani, K. Mudiyanselage, F. Xu, A.E. Baber, J. Evans, S.D. Senanayake, D.J. Stacchiola, P. Liu, J. Hrbek, J.F. Sanz, J.A. Rodriguez, Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2, Science 345(2014) 546-550.[18] F. Studt, I. Sharafutdinov, F. Abild-Pedersen, C.F. Elkjaer, J.S. Hummelshoj, S. Dahl, I. Chorkendorff, J.K. Norskov, Discovery of a Ni-Ga catalyst for CO2 reduction to methanol, Nat. Chem. 6(2014) 320-324.[19] Q. Liu, L. Wu, R. Jackstell, M. Beller, Using CO2 as a building block in organic synthesis, Nat. Commun. 6(2015) 5933.[20] L.G. Wang, H.Q. Li, S.M. Xin, P. He, Y. Cao, F.J. Li, X.J. Hou, Highly efficient synthesis of diethyl carbonate via one-pot reaction from CO2, epoxides and ethanol over KIbased binary catalyst system, Appl. Catal. A Gen. 471(2014) 19-27.[21] F.J. Li, L.G. Wang, X. Han, P. He, Y. Cao, H.Q. Li, Influence of support on the performance of copper catalysts for the effective hydrogenation of ethylene carbonate to synthesize ethylene glycol and methanol, RSC Adv. 6(2016) 45894-45906.[22] M. Ammar, Y. Cao, P. He, L.G. Wang, J.Q. Chen, H.Q. Li, An efficient green route for hexamethylene-1,6-diisocyanate synthesis by thermal decomposition of hexamethylene-1,6-dicarbamate over Co3O4/ZSM-5 catalyst:An indirect utilization of CO2, Chin. J. Chem. Eng. 25(2017) 1760-1770.[23] F.J. Li, L.G. Wang, X. Han, Y. Cao, P. He, H.Q. Li, Selective hydrogenation of ethylene carbonate to methanol and ethylene glycol over cu/SiO2 catalysts prepared by ammonia evaporation method, Int. J. Hydrogen Energy 42(2017) 2144-2156.[24] L. Wang, M. Ammar, P. He, Y. Li, Y. Cao, F. Li, X. Han, H. Li, The efficient synthesis of diethyl carbonate via coupling reaction from propylene oxide, CO2 and ethanol over binary PVEImBr/MgO catalyst, Catal. Today 281(2017) 360-370.[25] D.H. Lan, H.T. Wang, L. Chen, C.T. Au, S.F. Yin, Phosphorous-modified bulk graphitic carbon nitride:Facile preparation and application as an acid-base bifunctional and efficient catalyst for CO2 cycloaddition with epoxides, Carbon 100(2016) 81-89.[26] D.H. Lan, Y.X. Gong, N.Y. Tan, S.S. Wu, J. Shen, K.C. Yao, B. Yi, C.T. Au, S.F. Yin, Multifunctionalization of GO with multi-cationic ILs as high efficient metal-free catalyst for CO2 cycloaddition under mild conditions, Carbon 127(2018) 245-254.[27] M. Beller, U.T. Bornscheuer, CO2 fixation through hydrogenation by chemical or enzymatic methods, Angew. Chem. Int. Ed. 53(2014) 4527-4528.[28] P. Gao, S.G. Li, X.N. Bu, S.S. Dang, Z. Liu, H. Wang, L. Zhong, M. Qiu, C. Yang, J. Cai, W. Wei, Y. Sun, Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst, Nat. Chem. 9(2017) 1019-1024.[29] J. Yoshihara, C.T. Campbell, Methanol synthesis and reverse water gas shift kinetics over cu(110) model Catalysts_Structural sensitivity, J. Catal. 161(1996) 776-782.[30] P.S. Sai Prasad, J.W. Bae, K.-W. Jun, K.-W. Lee, Fischer-Tropsch synthesis by CO2 hydrogenation on Fe-based catalysts, Catal. Surv. Asia 12(2008) 170-183.[31] N. Meiri, R. Radus, M. Herskowitz, Simulation of novel process of CO2 conversion to liquid fuels, J. CO2 Util. 17(2017) 284-289.[32] E.V. Kondratenko, G. Mul, J. Baltrusaitis, G.O. Larrazabal, J. Perez-Ramirez, Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes, Energy Environ. Sci. 6(2013) 3112-3135.[33] P. Nikolaidis, A. Poullikkas, A comparative overview of hydrogen production processes, Renew. Sustain. Energy Rev. 67(2017) 597-611.[34] I. Dincer, C. Acar, Review and evaluation of hydrogen production methods for better sustainability, Int. J. Hydrogen Energy 40(2015) 11094-11111.[35] O. Alavi, A. Mostafaeipour, M. Qolipour, Analysis of hydrogen production from wind energy in the southeast of Iran, Int. J. Hydrogen Energy 41(2016) 15158-15171.[36] J. Domenech, T. Eveleigh, B. Tanju, Marine hydrokinetic (MHK) systems:Using systems thinking in resource characterization and estimating costs for the practical harvest of electricity from tidal currents, Renew. Sustain. Energy Rev. 81(2018) 723-730.[37] S.H. Hsu, J. Miao, L. Zhang, J. Gao, H. Wang, H. Tao, S.F. Hung, A. Vasileff, S.Z. Qiao, B. Liu, An Earth-Abundant Catalyst-Based Seawater Photoelectrolysis System with 17.9% Solar-to-Hydrogen Efficiency, Adv. Mater. 30(2018), e1707261.[38] R.M. Navarro, M.C. Sanchez-Sanchez, M.C. Alvarez-Galvan, F.d. Valle, J.L.G. Fierro, Hydrogen production from renewable sources:Biomass and photocatalytic opportunities, Energy Environ. Sci. 2(2009) 35-54.[39] X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat. Mater. 8(2009) 76-80.[40] H. Balat, E. Kirtay, Hydrogen from biomass-present scenario and future prospects, Int. J. Hydrogen Energy 35(2010) 7416-7426.[41] K.G. dos Santos, C.T. Eckert, E. De Rossi, R.A. Bariccatti, E.P. Frigo, C.A. Lindino, H.J. Alves, Hydrogen production in the electrolysis of water in Brazil, a review, Renew. Sustain. Energy Rev. 68(2017) 563-571.[42] D. Pakhare, J. Spivey, A review of dry (CO2) reforming of methane over noble metal catalysts, Chem. Soc. Rev. 43(2014) 7813-7837.[43] A. Bansode, A. Urakawa, Towards full one-pass conversion of carbon dioxide to methanol and methanol-derived products, J. Catal. 309(2014) 66-70.[44] M.M. Li, Z.Y. Zeng, F.L. Liao, X.L. Hong, S.C.E. Tsang, Enhanced CO2 hydrogenation to methanol over CuZn nanoalloy in Ga modified Cu/ZnO catalysts, J. Catal. 343(2016) 157-167.[45] R. Gaikwad, A. Bansode, A. Urakawa, High-pressure advantages in stoichiometric hydrogenation of carbon dioxide to methanol, J. Catal. 343(2016) 127-132.[46] G.A. Deluga, J.R. Salge, L.D. Schmidt, X.E. Verykios, Renewable hydrogen from ethanol by autothermal reforming, Science 303(2004) 993-997.[47] J. Goldemberg, Ethanol for a sustainable energy future, Science 315(2007) 808-810.[48] H. Kusama, K. Okabe, K. Sayama, H. Arakawa, CO2 hydrogenation to ethanol over promoted Rh/SiO2 catalysts, Catal. Today 28(1996) 261-266.[49] H. Kusama, K. Okabe, K. Sayama, H. Arakawa, Ethanol synthesis by catalytic hydrogenation of CO2 over Rh-Fe/SiO2 catalysts, Energy 22(1997) 343-348.[50] S. Bai, Q. Shao, P. Wang, Q. Dai, X. Wang, X. Huang, Highly active and selective hydrogenation of CO2 to ethanol by ordered Pd-cu nanoparticles, J. Am. Chem. Soc. 139(2017) 6827-6830.[51] D.L.S. Nieskens, D. Ferrari, Y. Liu, R. Kolonko, The conversion of CO2 and hydrogen into methanol and higher alcohols, Catal. Commun. 14(2011) 111-113.[52] Y. Chen, S. Choi, L.T. Thompson, Low temperature CO2 hydrogenation to alcohols and hydrocarbons over Mo2C supported metal catalysts, J. Catal. 343(2016) 147-156.[53] L. Wang, L. Wang, J. Zhang, X. Liu, H. Wang, W. Zhang, Q. Yang, J. Ma, X. Dong, S.J. Yoo, J.G. Kim, X. Meng, F.S. Xiao, Selective hydrogenation of CO2 to ethanol over cobalt catalysts, Angew. Chem. Int. Ed. 57(2018) 6104-6108.[54] W. Xu, P.J. Ramirez, D. Stacchiola, J.A. Rodriguez, Synthesis of α-MoC1-x and β-MoCy catalysts for CO2 hydrogenation by thermal carburization of Mo-oxide in hydrocarbon and hydrogen mixtures, Catal. Lett. 144(2014) 1418-1424.[55] H. Arakawa, Research and development on new synthetic routes for basic chemicals by catalytic hydrogenation of CO2, in:T. Inui, M. Anpo, K. Izui, S. Yanagida, T. Yamaguchi (Eds.),Advances in Chemical Conversions for Mitigating CO21998, pp. 19-30.[56] T. Inui, T. Yamamoto, Effective synthesis of ethanol from CO2 on polyfunctional composite catalysts, Catal. Today 45(1998) 209-214.[57] Q. Qian, M. Cui, J. Zhang, J. Xiang, J. Song, G. Yang, B. Han, Synthesis of ethanol via a reaction of dimethyl ether with CO2 and H2, Green Chem. 20(2018) 206-213.[58] J. Zhang, Q. Qian, M. Cui, C. Chen, S. Liu, B. Han, Synthesis of ethanol from paraformaldehyde, CO2 and H2, Green Chem. 19(2017) 4396-4401.[59] Y. Song, W. Chen, C. Zhao, S. Li, W. Wei, Y. Sun, Metal-free nitrogen-doped mesoporous carbon for Electroreduction of CO2 to ethanol, Angew. Chem. Int. Ed. 56(2017) 10840-10844.[60] M. Cui, Q. Qian, Z. He, Z. Zhang, J. Ma, T. Wu, G. Yang, B. Han, Bromide promoted hydrogenation of CO2 to higher alcohols using Ru-CO homogeneous catalyst, Chem. Sci. 7(2016) 5200-5205.[61] Q. Qian, M. Cui, Z. He, C. Wu, Q. Zhu, Z. Zhang, J. Ma, G. Yang, J. Zhang, B. Han, Highly selective hydrogenation of CO2 into C2+ alcohols by homogeneous catalysis, Chem. Sci. 6(2015) 5685-5689.[62] Z. He, Q. Qian, J. Ma, Q. Meng, H. Zhou, J. Song, Z. Liu, B. Han, Water-enhanced synthesis of higher alcohols from CO2 hydrogenation over a Pt/Co3O4 catalyst under milder conditions, Angew. Chem. Int. Ed. 55(2016) 737-741.[63] B. Ouyang, S.H. Xiong, Y.H. Zhang, B. Liu, J.L. Li, The study of morphology effect of Pt/Co3O4 catalysts for higher alcohol synthesis from CO2 hydrogenation, Appl. Catal. A Gen. 543(2017) 189-195.[64] T.T. Zhuang, Z.Q. Liang, A. Seifitokaldani, Y. Li, P. De Luna, T. Burdyny, F. Che, F. Meng, Y. Min, R. Quintero-Bermudez, C.T. Dinh, Y. Pang, M. Zhong, B. Zhang, J. Li, P.N. Chen, X.L. Zheng, H. Liang, W.N. Ge, B.J. Ye, D. Sinton, S.H. Yu, E.H. Sargent, Steering post-C-C coupling selectivity enables high efficiency electroreduction of CO2 to multi-carbon alcohols, Nat. Catal. 1(2018) 421-428.[65] P.M. Maitlis, A. Haynes, G.J. Sunley, M.J. Howard, Methanol carbonylation revisited:Thirty years on, J. Chem. Soc. Dalton (1996) 2187-2196.[66] J.F. Wu, S.M. Yu, W.D. Wang, Y.X. Fan, S. Bai, C.W. Zhang, Q. Gao, J. Huang, W. Wang, Mechanistic insight into the formation of acetic acid from the direct conversion of methane and CO2 on zinc-modified H-ZSM-5 zeolite, J. Am. Chem. Soc. 135(2013) 13567-13573.[67] A.M. Rabie, M.A. Betiha, S.-E. Park, Direct synthesis of acetic acid by simultaneous co-activation of methane and CO2 over cu-exchanged ZSM-5 catalysts, Appl. Catal. B Environ. 215(2017) 50-59.[68] B.D. Montejo-Valencia, Y.J. Pagan-Torres, M.M. Martinez-Inesta, M.C. Curet-Arana, Density functional theory (DFT) study to unravel the catalytic properties of M-exchanged MFI, (M=be, co, cu, mg, Mn, Zn) for the conversion of methane and CO2 to acetic acid, ACS Catal. 7(2017) 6719-6728.[69] Q. Qian, J. Zhang, M. Cui, B. Han, Synthesis of acetic acid via methanol hydrocarboxylation with CO2 and H2, Nat. Commun. 7(2016) 11481.[70] M. Cui, Q. Qian, J. Zhang, C. Chen, B. Han, Efficient synthesis of acetic acid via Rh catalyzed methanol hydrocarboxylation with CO2 and H2 under milder conditions, Green Chem. 19(2017) 3558-3565.[71] S. Hassanpour, F. Yaripour, M. Taghizadeh, Performance of modified H-ZSM-5 zeolite for dehydration of methanol to dimethyl ether, Fuel Process. Technol. 91(2010) 1212-1221.[72] I.H. Kim, S. Kim, W. Cho, E.S. Yoon, Simulation of commercial dimethyl ether production plant, 28(2010) 799-804.[73] F. Raoof, M. Taghizadeh, A. Eliassi, F. Yaripour, Effects of temperature and feed composition on catalytic dehydration of methanol to dimethyl ether over γ-alumina, Fuel 87(2008) 2967-2971.[74] A.A. Rownaghi, F. Rezaei, M. Stante, J. Hedlund, Selective dehydration of methanol to dimethyl ether on ZSM-5 nanocrystals, Appl. Catal. B Environ. 119-120(2012) 56-61.[75] F. Yaripour, F. Baghaei, I. Schmidt, J. Perregaard, Synthesis of dimethyl ether from methanol over aluminium phosphate and silica-titania catalysts, Catal. Commun. 6(2005) 542-549.[76] A.T. Aguayo, J. Erena, D. Mier, J.M. Arandes, M. Olazar, J. Bilbao, Kinetic modeling of dimethyl ether synthesis in a single step on a CuO-ZnO-Al2O3/gamma-Al2O3 catalyst, Ind. Eng. Chem. Res. 46(2007) 5522-5530.[77] B. An, J. Zhang, K. Cheng, P. Ji, C. Wang, W. Lin, Confinement of Ultrasmall cu/ZnOx nanoparticles in metal-organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO2, J. Am. Chem. Soc. 139(2017) 3834-3840.[78] S. Kattel, P.J. Ramirez, J.G. Chen, J.A. Rodriguez, P. Liu, CATALYSIS Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts, Science 355(2017) (1296-+).[79] K. Larmier, W.-C. Liao, S. Tada, E. Lam, R. Verel, A. Bansode, A. Urakawa, A. ComasVives, C. Coperet, CO2-to-methanol hydrogenation on zirconia-supported copper nanoparticles:Reaction intermediates and the role of the metal-support Interface, Angew. Chem. Int. Ed. 56(2017) 2318-2323.[80] M.R. Rahimpour, M. Farniaei, M. Abbasi, J. Javanmardi, S. Kabiri, Comparative study on simultaneous production of methanol, hydrogen, and DME using a novel integrated thermally double-coupled reactor, Energy Fuel 27(2013) 1982-1993.[81] J.H. Flores, D.P.B. Peixoto, L.G. Appel, R.R. de Avillez, M.I.P.d. Silva, The influence of different methanol synthesis catalysts on direct synthesis of DME from syngas, Catal. Today 172(2011) 218-225.[82] Y. Zhang, D. Li, S. Zhang, K. Wang, J. Wu, CO2 hydrogenation to dimethyl ether over CuO-ZnO-Al2O3/HZSM-5 prepared by combustion route, RSC Adv. 4(2014) 16391-16396.[83] R.J. da Silva, A.F. Pimentel, R.S. Monteiro, C.J.A. Mota, Synthesis of methanol and dimethyl ether from the CO2 hydrogenation over cu·ZnO supported on Al2O3 and Nb2O5, J. CO2 Util. 15(2016) 83-88.[84] A. Ateka, I. Sierra, J. Erena, J. Bilbao, A.T. Aguayo, Performance of CuO-ZnO-ZrO2 and CuO-ZnO-MnO as metallic functions and SAPO-18 as acid function of the catalyst for the synthesis of DME CO-feeding CO2, Fuel Process. Technol. 152(2016) 34-45.[85] Z.-z. Qin, T.-m. Su, H.-b. Ji, Y.-x. Jiang, R.-w. Liu, J.-h. Chen, Experimental and theoretical study of the intrinsic kinetics for dimethyl ether synthesis from CO2 over cuFe-Zr/HZSM-5, AIChE J. 61(2015) 1613-1627.[86] M. Sedighi, M. Ghasemi, M. Sadeqzadeh, M. Hadi, Thorough study of the effect of metal-incorporated SAPO-34 molecular sieves on catalytic performances in MTO process, Powder Technol. 291(2016) 131-139.[87] G. Centi, E.A. Quadrelli, S. Perathoner, Catalysis for CO2 conversion:A key technology for rapid introduction of renewable energy in the value chain of chemical industries, Energy Environ. Sci. 6(2013) 1711-1731.[88] Y. Zhang, D. Fu, X. Liu, Z. Zhang, C. Zhang, B. Shi, J. Xu, Y.-F. Han, Operando spectroscopic study of dynamic structure of Iron oxide catalysts during CO2 hydrogenation, ChemCatChem 10(2018) 1272-1276.[89] B. Hu, S. Frueh, H.F. Garces, L. Zhang, M. Aindow, C. Brooks, E. Kreidler, S.L. Suib, Selective hydrogenation of CO2 and CO to useful light olefins over octahedral molecular sieve manganese oxide supported iron catalysts, Appl. Catal. B Environ. 132-133(2013) 54-61.[90] R. Satthawong, N. Koizumi, C. Song, P. Prasassarakich, Light olefin synthesis from CO2 hydrogenation over K-promoted Fe-CO bimetallic catalysts, Catal. Today 251(2015) 34-40.[91] C.G. Visconti, M. Martinelli, L. Falbo, A. Infantes-Molina, L. Lietti, P. Forzatti, G. Iaquaniello, E. Palo, B. Picutti, F. Brignoli, CO2 hydrogenation to lower olefins on a high surface area K-promoted bulk Fe-catalyst, Appl. Catal. B Environ. 200(2017) 530-542.[92] J. Wang, Z. You, Q. Zhang, W. Deng, Y. Wang, Synthesis of lower olefins by hydrogenation of CO2 over supported iron catalysts, Catal. Today 215(2013) 186-193.[93] S. Hu, M. Liu, F. Ding, C. Song, G. Zhang, X. Guo, Hydrothermally stable MOFs for CO2 hydrogenation over iron-based catalyst to light olefins, J. CO2 Util. 15(2016) 89-95.[94] O. Martin, A.J. Martin, C. Mondelli, S. Mitchell, T.F. Segawa, R. Hauert, C. Drouilly, D. Curulla-Ferre, J. Perez-Ramirez, Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation, Angew. Chem. Int. Ed. 55(2016) 6261-6265.[95] J. Gao, C. Jia, B. Liu, Direct and selective hydrogenation of CO2 to ethylene and propene by bifunctional catalysts, Catal. Sci. Technol. 7(2017) 5602-5607.[96] P. Gao, S. Dang, S. Li, X. Bu, Z. Liu, M. Qiu, C. Yang, H. Wang, L. Zhong, Y. Han, Q. Liu, W. Wei, Y. Sun, Direct production of lower olefins from CO2 conversion via bifunctional catalysis, ACS Catal. 8(2017) 571-578.[97] Z.L. Li, J.J. Wang, Y.Z. Qu, H.L. Liu, C.Z. Tang, S. Miao, Z.C. Feng, H.Y. An, C. Li, Highly selective conversion of CO2 to lower olefins, ACS Catal. 7(2017) 8544-8548.[98] X. Liu, M. Wang, C. Zhou, W. Zhou, K. Cheng, J. Kang, Q. Zhang, W. Deng, Y. Wang, Selective transformation of CO2 into lower olefins with a bifunctional catalyst composed of ZnGa2O4 and SAPO-34, Chem. Commun. 54(2018) 140-143.[99] C.-T. Dinh, T. Burdyny, M.G. Kibria, A. Seifitokaldani, C.M. Gabardo, F.P.G. de Arquer, A. Kiani, J.P. Edwards, P. De Luna, O.S. Bushuyev, C. Zou, R. Quintero-Bermudez, Y. Pang, D. Sinton, E.H. Sargent, CO2 electroreduction to ethylene via hydroxidemediated copper catalysis at an abrupt interface, Science 360(2018) 783-787.[100] E.L. Clark, C. Hahn, T.F. Jaramillo, A.T. Bell, Electrochemical CO2 reduction over compressively strained CuAg surface alloys with enhanced multi-carbon oxygenate selectivity, J. Am. Chem. Soc. 139(2017) 15848-15857.[101] K. Jiang, R.B. Sandberg, A.J. Akey, X.Y. Liu, D.C. Bell, J.K. Norskov, K.R. Chan, H.T. Wang, Metal ion cycling of cu foil for selective C-C coupling in electrochemical CO2 reduction, Nat. Catal. 1(2018) 111-119.[102] T.T.H. Hoang, S. Verma, S. Ma, T.T. Fister, J. Timoshenko, A.I. Frenkel, P.J.A. Kenis, A.A. Gewirth, Nanoporous copper-silver alloys by additive-controlled electrodeposition for the selective Electroreduction of CO2 to ethylene and ethanol, J. Am. Chem. Soc. 140(2018) 5791-5797.[103] R. Cai, R.D. Milton, S. Abdellaoui, T. Park, J. Patel, B. Alkotaini, S.D. Minteer, Electroenzymatic C-C bond formation from CO2, J. Am. Chem. Soc. 140(2018) 5041-5044.[104] C. Marcilly, Present status and future trends in catalysis for refining and petrochemicals, J. Catal. 216(2003) 47-62.[105] J. Wei, Q. Ge, R. Yao, Z. Wen, C. Fang, L. Guo, H. Xu, J. Sun, Directly converting CO2 into a gasoline fuel, Nat. Commun. 8(2017) 15174. |
[1] | Baoyu Liu, Feng Xiong, Jianwen Zhang, Manna Wang, Yi Huang, Yanxiong Fang, Jinxiang Dong. Enhanced ortho-selective t–butylation of phenol over sulfonic acid functionalized mesopore MTW zeolites[J]. 中国化学工程学报, 2023, 60(8): 1-7. |
[2] | Fei Li, Xuemei Wang, Pengze Zhang, Qinqin Wang, Mingyuan Zhu, Bin Dai. Nitrogen and phosphorus co-doped activated carbon induces high density Cu+ active center for acetylene hydrochlorination[J]. 中国化学工程学报, 2023, 59(7): 193-199. |
[3] | Tingjun Fu, Ran Wang, Kun Ren, Liangliang Zhang, Zhong Li. Intensified shape selectivity and alkylation reaction for the two-step conversion of methanol aromatization to p-xylene[J]. 中国化学工程学报, 2023, 59(7): 240-250. |
[4] | Haodi Tan, Minjiao Yang, Yingquan Chen, Xu Chen, Francesco Fantozzi, Pietro Bartocci, Roman Tschentscher, Federica Barontini, Haiping Yang, Hanping Chen. Preparation of aromatic hydrocarbons from catalytic pyrolysis of digestate[J]. 中国化学工程学报, 2023, 57(5): 1-9. |
[5] | Chenyang Zhao, Yinhan Cheng, Guangfei Qu, Yongheng Yuan, Fenghui Wu, Ye Liu, Shan Liu, Junyan Li, Ping Ning. High-performance liquid-phase catalytic purification of phosphine in tail gas using Pd(II)/Cu(II) composite[J]. 中国化学工程学报, 2023, 57(5): 98-108. |
[6] | Junyu Chen, Yu Yang, Yuzheng Pan, Yang You, Liwen Hu, Meilong Hu. Wear resistance performance of high entropy alloy–ceramic coating composites synthesized via a novel combined process[J]. 中国化学工程学报, 2023, 57(5): 202-213. |
[7] | Jian Wang, Yuanhui Shen, Donghui Zhang, Zhongli Tang, Wenbin Li. Integrated vacuum pressure swing adsorption and Rectisol process for CO2 capture from underground coal gasification syngas[J]. 中国化学工程学报, 2023, 57(5): 265-279. |
[8] | Jixiang Liu, Xin Zhou, Gengfei Yang, Hui Zhao, Zhibo Zhang, Xiang Feng, Hao Yan, Yibin Liu, Xiaobo Chen, Chaohe Yang. Conceptual carbon-reduction process design and quantitative sustainable assessment for concentrating high purity ethylene from wasted refinery gas[J]. 中国化学工程学报, 2023, 57(5): 290-308. |
[9] | Shujun Peng, Song Lei, Sisi Wen, Jian Xue, Haihui Wang. A Ruddlesden–Popper oxide as a carbon dioxide tolerant cathode for solid oxide fuel cells that operate at intermediate temperatures[J]. 中国化学工程学报, 2023, 56(4): 25-32. |
[10] | Yuhan Zhu, Jia Wei, Jun Li. Decontamination of Cr(VI) from water using sewage sludge-derived biochar: Role of environmentally persistent free radicals[J]. 中国化学工程学报, 2023, 56(4): 97-103. |
[11] | Shuang Qiu, Yonghou Xiao, Haoran Wu, Shengnan Lu, Qidong Zhao, Gaohong He. One-pot synthesis of bimetallic CeCu-SAPO-34 for high-efficiency selective catalytic reduction of nitrogen oxides with NH3 at low temperature[J]. 中国化学工程学报, 2023, 56(4): 193-202. |
[12] | Xingzhong Li, Kunlin Yu, Zibo He, Bo Liu, Rongfei Zhou, Weihong Xing. Improved SSZ-13 thin membranes fabricated by seeded-gel approach for efficient CO2 capture[J]. 中国化学工程学报, 2023, 56(4): 273-280. |
[13] | Xiaoping Li, Jiaxin Pan, Jinwen Shi, Yanlin Chai, Songwei Hu, Qiaorong Han, Yanming Zhang, Xianwen Li, Dengwei Jing. Nanoparticle-induced drag reduction for polyacrylamide in turbulent flow with high Reynolds numbers[J]. 中国化学工程学报, 2023, 56(4): 290-298. |
[14] | Juan Du, Aibing Chen, Senlin Hou, Xueqing Gao. Self-deposition for mesoporous carbon nanosheet with supercapacitor application[J]. 中国化学工程学报, 2023, 55(3): 34-40. |
[15] | Mingdong Sun, Dongxin Pan, Tingting Ye, Jing Gu, Yu Zhou, Jun Wang. Ionic porous polyamide derived N-doped carbon towards highly selective electroreduction of CO2[J]. 中国化学工程学报, 2023, 55(3): 212-221. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||