中国化学工程学报 ›› 2019, Vol. 27 ›› Issue (6): 1236-1246.DOI: 10.1016/j.cjche.2018.08.005
• Special Issue: Separation Process Intensification of Chemical Engineering • 上一篇 下一篇
Hong Li, Chuanhui Wu, Zhiqiang Hao, Xingang Li, Xin Gao
收稿日期:
2018-06-14
修回日期:
2018-07-04
出版日期:
2019-06-28
发布日期:
2019-08-19
通讯作者:
Xin Gao
基金资助:
Hong Li, Chuanhui Wu, Zhiqiang Hao, Xingang Li, Xin Gao
Received:
2018-06-14
Revised:
2018-07-04
Online:
2019-06-28
Published:
2019-08-19
Contact:
Xin Gao
Supported by:
摘要: The concept of process intensification (PI) has absorbed diverse definitions and stays true to the mission-"do more with less", which is an approach purposed by chemical engineers to solve the global energy & environment problems. To date, the focus of PI has been on processes mainly involving vapor/liquid systems. Based on the fundamental principles of vapor-liquid mass transfer process like distillation and absorption, there are three strategies to intensify interphase mass transfer:enhancing the overall driving force, improving the mass transfer coefficient and enlarging the vapor-liquid interfacial area. More specifically, this article herein provides an overview of various technologies to strengthen the vapor-liquid mass transfer, including application of external fields, addition of third substances, micro-chemical technology and usage of solid foam, with the objective to contribute to the future developments and potential applications of PI in scientific research and industrial sectors.
Hong Li, Chuanhui Wu, Zhiqiang Hao, Xingang Li, Xin Gao. Process intensification in vapor-liquid mass transfer: The state-of-the-art[J]. 中国化学工程学报, 2019, 27(6): 1236-1246.
Hong Li, Chuanhui Wu, Zhiqiang Hao, Xingang Li, Xin Gao. Process intensification in vapor-liquid mass transfer: The state-of-the-art[J]. Chinese Journal of Chemical Engineering, 2019, 27(6): 1236-1246.
[1] C. Ramshaw, HiGee' distillation-an example of process intensification, Chem. Eng. (1983) 13-14. [2] L. Luo, Heat and Mass Transfer Intensification and Shape Optimization:A Multi-Scale Approach, Springer Science & Business Media, London, 2013. [3] D. Trent, D. Tirtowidjojo, G. Quarderer, Reactive stripping in a rotating packed bed for the production of hypochlorous acid, BHR PI conferences, 1999. [4] D. Trent, D. Tirtowidjojo, Intensifying the process, Chem. Eng. (742) (2003) 30-31. [5] G.J. Quarderer, D.L. Trent, E.J. Stewart, D. Tirtowidjojo, A.J. Mehta, C.A. Tirtowidjojo, Method for Synthesis of Hypohalous Acid, U.S. Pat., 6048513(2000). [6] G.E.C. Garcia, J. van der Schaaf, A.A. Kiss, A review on process intensification in HiGee distillation, J. Chem. Technol. Biotechnol. 92(6) (2017) 1136-1156. [7] D. Basmadjian, Mass Transfer:Principles and Applications, CRC Press, Florida, 2003. [8] M. Bhattacharya, S.K. Venkata, T. Basak, Role of microwave heating strategies in enhancing the progress of a first-order endothermic reaction, AIChE J. 59(2) (2013) 656-670. [9] J. Tierney, P. Lidström, Microwave Assisted Organic Synthesis, John Wiley & Sons, Oxford, 2009. [10] N. Wang, P. Wang, Study and application status of microwave in organic wastewater treatment-a review, Chem. Eng. J. 283(2016) 193-214. [11] F. Chemat, E. Esveld, Microwave super-heated boiling of organic liquids:Origin, effect and application, Chem. Eng. Technol. 24(7) (2001) 735-744. [12] A.D.L. Hoz, A. Diaz-Ortiz, A. Moreno, Microwaves in organic synthesis. Thermal and non-thermal microwave effects, Chem. Soc. Rev. 34(2) (2005) 164-178. [13] H. Li, J. Cui, X. Li, X. Gao, Recent developments in microwave-assisted chemical separation processes, Chem. Ind. Eng. Prog. 35(12) (2016) 3735-3745. [14] R. Saillard, M. Poux, J. Berlan, M. Audhuy-Peaudecerf, Microwave heating of organic solvents:Thermal effects and field modelling, Tetrahedron 51(14) (1995) 4033-4042. [15] D.R. Baghurst, D.M.P. Mingos, A new reaction vessel for accelerated syntheses using microwave dielectric super-heating effects, J. Chem. Soc. Dalton Trans. (7) (1992) 1151-1155. [16] E. Altman, G.D. Stefanidis, T. van Gerven, A.I. Stankiewicz, Process intensification of reactive distillation for the synthesis of n-propyl propionate:The effects of microwave radiation on molecular separation and esterification reaction, Ind. Eng. Chem. Res. 49(21) (2010) 10287-10296. [17] G. Lin, H.U. Tu, J. Peng, S. Yin, L. Zhang, L.I. Zhiqiang, Experimental study on the microwave drying of hydrometallurgy mud, Chem. Ind. Eng. Prog. 34(9) (2015) 3472-3475. [18] G. Zhang, S. Li, Q. Zhang, X. Li, C. Mu, Optimization of microwave-vacuum drying for detoxified starfish, Trans. Chin. Soc. Agric. Eng. 31(16) (2015) 289-295. [19] L. Ma, S. Mu, M. Li, Y. Wang, P. Ma, Microwave drying characteristics of Chinese wolfberry and the effect on the quality of Chinese wolfberry, J. Agric. Mech. Res. 5(2015) 208-211. [20] L. Qi, R. Peng, Y. Cheng, Y. Jin, Characteristics of microwave drying of grass carp fillets, Food Ferment. Ind. 42(01) (2016) 119-123. [21] W. Su, Experimental study of microwave drying technology for municipal sewage sludge treatment, Value Eng. (17) (2016) 105-107. [22] M. Tao, Z. Zhang, J. Ji, L. Geng, D. Wang, W. Liu, Research on microwave drying characteristics of peony seeds, J. Agric. Mech. Res. (09) (2017) 249-253. [23] X. Qin, G. Zhang, B. Nie, A. Wang, Study on the effects of different drying methods on the quality of carrots, Grain Process. 42(6) (2017) 49-55. [24] K. Werth, P. Lutze, A.A. Kiss, A.I. Stankiewicz, G.D. Stefanidis, A. Górak, A systematic investigation of microwave-assisted reactive distillation:Influence of microwaves on separation and reaction, Chem. Eng. Process. 93(2015) 87-97. [25] X. Gao, X. Li, J. Zhang, J. Sun, H. Li, Influence of a microwave irradiation field on vapor-liquid equilibrium, Chem. Eng. Sci. 90(2013) 213-220. [26] B.B. Owen, R.C. Miller, C.E. Milner, H.L. Cogan, The dielectric constant of water as a function of temperature and pressure1, 2, J. Phys. Chem. 65(11) (1961) 2065-2070. [27] H. Li, J. Cui, J. Liu, X. Li, X. Gao, Mechanism of the effects of microwave irradiation on the relative volatility of binary mixtures, AIChE J. 63(4) (2017) 1328-1337. [28] H. Ding, M. Liu, Y. Gao, J. Qi, H. Zhou, J. Li, Microwave reactive distillation process for production of ethyl acetate, Ind. Eng. Chem. Res. 55(6) (2016) 1590-1597. [29] H. Li, P. Shi, X. Fan, X. Gao, Understanding the influence of microwave on the relative volatility used in the pyrolysis of Indonesia oil sands, Chin. J. Chem. Eng. 26(7) (2018) 1485-1492. [30] T.R. Bajgai, G.V. Raghavan, F. Hashinaga, M.O. Ngadi, Electrohydrodynamic drying-a concise overview, Dry. Technol. 24(7) (2006) 905-910. [31] M. Goldman, A. Goldman, R.S. Sigmond, The corona discharge, its properties and specific uses, Pure Appl. Chem. 57(9) (1985) 1353-1362. [32] N.N. Barthakur, T. Al-Kanani, Impact of air ions of both polarity on evaporation of certain organic and inorganic liquids, Int. J. Biometeorol. 33(2) (1989) 136-141. [33] A. Martynenko, T. Astatkie, N. Riaud, P. Wells, T. Kudra, Driving forces for mass transfer in electrohydrodynamic (ehd) drying, Innov. Food Sci. Emerg. Technol. 43(2017) 18-25. [34] F.C. Lai, K. Lai, Ehd-enhanced drying with wire electrode, Dry. Technol. 20(7) (2002) 1393-1405. [35] O. Rouaud, M. Havet, Assessment of the electrohydrodynamic drying process, Food Bioprocess Technol. 2(3) (2009) 240-247. [36] A. Martynenko, T. Kudra, Electrically-induced transport phenomena in ehd dryinga review, Trends Food Sci. Technol. 54(2016) 63-73. [37] K.D. Blankenship, V.M. Shah, C. Tsouris, Distillation under electric fields, Sep. Sci. Technol. 34(6-7) (1999) 1393-1409. [38] W. Shin, S. Yiacoumi, C. Tsouris, Electric-field effects on interfaces:Electrospray and electrocoalescence, Curr. Opin. Colloid Interface Sci. 9(3) (2004) 249-255. [39] C. Tsouris, K.D. Blankenship, J. Dong, D.W. Depaoli, Enhancement of distillation efficiency by application of an electric field, Ind. Eng. Chem. Res. 40(17) (2001) 3843-3847. [40] W. Shin, S. Yiacoumi, C. Tsouris, Experiments on electrostatic dispersion of air in water, Ind. Eng. Chem. Res. 36(9) (1997) 3647-3655. [41] T. Elperin, A. Fominykh, Z. Orenbakh, Heat and mass transfer during bubble growth in an alternating electric field, Int. Commun. Heat Mass Transf. 31(8) (2004) 1047-1056. [42] Y. Li, Experimental investigation on ozone mass transfer coefficient enhanced by electric field in liquid phase, Adv. Mater. Res. 864-867(2014) 2139-2144. [43] X. Niu, K. Du, F. Xiao, Experimental study on the effect of magnetic field on the heat conductivity and viscosity of ammonia-water, Energy Build. 43(5) (2011) 1164-1168. [44] L. Hołysz, M. Chibowski, E. Chibowski, Time-dependent changes of zeta potential and other parameters of in situ calcium carbonate due to magnetic field treatment, Colloids Surf. A 208(1) (2002) 231-240. [45] C. Bradtmöller, A. Janzen, M. Crine, D. Toye, E. Kenig, S. Scholl, Influence of viscosity on liquid flow inside structured packings, Ind. Eng. Chem. Res. 54(10) (2015) 2803-2815. [46] R.E. Tsai, P. Schultheiss, A. Kettner, J.C. Lewis, A.F. Seibert, R.B. Eldridge, G.T. Rochelle, Influence of surface tension on effective packing area, Ind. Eng. Chem. Res. 47(4) (2008) 1253-1260. [47] C.P. Stemmet, F. Bartelds, J. Van der Schaaf, B. Kuster, J.C. Schouten, Influence of liquid viscosity and surface tension on the gas-liquid mass transfer coefficient for solid foam packings in co-current two-phase flow, Chem. Eng. Res. Des. 86(10) (2008) 1094-1106. [48] X. Niu, D. Kai, S. Du, Numerical analysis of falling film absorption with ammoniawater in magnetic field, Appl. Therm. Eng. 27(11) (2007) 2059-2065. [49] X.F. Niu, K. Du, F. Xiao, Experimental study on ammonia-water falling film absorption in external magnetic fields, Int. J. Refrig. 33(4) (2010) 686-694. [50] Z. Samadi, M. Haghshenasfard, A. Moheb, CO2 absorption using nanofluids in a wetted-wall column with external magnetic field, Chem. Eng. Technol. 37(3) (2014) 462-470. [51] A. Szcześ, E. Chibowski, L. Hołysz, P. Rafalski, Effects of static magnetic field on water at kinetic condition, Chem. Eng. Process. 50(1) (2011) 124-127. [52] L. Holysz, A. Szczes, E. Chibowski, Effects of a static magnetic field on water and electrolyte solutions, J. Colloid Interface Sci. 316(2) (2007) 996-1002. [53] S. Wu, Y. Sun, S. Jia, Effects of magnetic field on evaporation of distilled water, J. Petrochem. Univ. 19(1) (2006) 10. [54] K. Kitazawa, Y. Ikezoe, H. Uetake, N. Hirota, Magnetic field effects on water, air and powders, Physica B 294(2001) 709-714. [55] J. Nakagawa, N. Hirota, K. Kitazawa, M. Shoda, Magnetic field enhancement of water vaporization, J. Appl. Phys. 86(5) (1999) 2923-2925. [56] Y. Guo, D. Yin, H. Cao, J. Shi, C. Zhang, Y. Liu, H. Huang, Y. Liu, Y. Wang, W. Guo, Evaporation rate of water as a function of a magnetic field and field gradient, Int. J. Mol. Sci. 13(12) (2012) 16916-16928. [57] K. Darvanjooghi, M. Hossein, M. Pahlevaninezhad, A. Abdollahi, S.M. Davoodi, Investigation of the effect of magnetic field on mass transfer parameters of CO2 absorption using Fe3O4-water nanofluid, AIChE J. 63(6) (2017) 2176-2186. [58] M. Rahimi, A.M. Dehkordi, Reactive absorption in packed bed columns in the presence of magnetic nanoparticles and magnetic field:Modeling and simulation, J. Ind. Eng. Chem. 45(2017) 131-144. [59] Q. Zhang, K. Gui, X. Wang, Effects of magnetic fields on improving mass transfer in flue gas desulfurization using a fluidized bed, Heat Mass Transf. 52(2) (2016) 331-336. [60] J. Salimi, M. Haghshenasfard, S.G. Etemad, CO2 absorption in nanofluids in a randomly packed column equipped with magnetic field, Heat Mass Transf. 51(5) (2015) 621-629. [61] W. Wu, G. Liu, S. Chen, H. Zhang, Nanoferrofluid addition enhances ammonia/water bubble absorption in an external magnetic field, Energy Build. 57(2013) 268-277. [62] X.Wang,H.Greenwald,NovelNanomagneticParticles,U.S.Pat.,20040210289(2004). [63] M. Akbari, M. Rahimi, M. Faryadi, Gas-liquid flowmass transfer in a t-shape microreactor stimulated with 1.7 MHz ultrasound waves, Chin. J. Chem. Eng. 25(9) (2017) 1143-1152. [64] Z. Dong, S. Zhao, Y. Zhang, C. Yao, Q. Yuan, G. Chen, Mixing and residence time distribution in ultrasonic microreactors, AIChE J. 63(4) (2017) 1404-1418. [65] Z. Dong, C. Yao, Y. Zhang, G. Chen, Q. Yuan, J. Xu, Hydrodynamics and mass transfer of oscillating gas-liquid flow in ultrasonic microreactors, AIChE J. 62(4) (2016) 1294-1307. [66] Z. Dong, C. Yao, X. Zhang, J. Xu, G. Chen, Y. Zhao, Q. Yuan, A high-power ultrasonic microreactor and its application in gas-liquid mass transfer intensification, Lab Chip 15(4) (2015) 1145-1152. [67] N.S. Herran, J.L.C. Lopez, J.A.S. Perez, Gas-liquid mass transfer in sonicated bubble columns. Effect of reactor diameter and liquid height, Ind. Eng. Chem. Res. 51(6) (2012) 2769-2774. [68] Y.G. Adewuyi, N.E. Khan, Modeling the ultrasonic cavitation-enhanced removal of nitrogen oxide in a bubble column reactor, AIChE J. 58(8) (2012) 2397-2411. [69] F. Laugier, C. Andriantsiferana, A.M. Wilhelm, H. Delmas, Ultrasound in gas-liquid systems:Effects on solubility and mass transfer, Ultrason. Sonochem. 15(6) (2008) 965-972. [70] A. Kumar, P.R. Gogate, A.B. Pandit, H. Delmas, A.M. Wilhelm, Gas-liquid mass transfer studies in sonochemical reactors, Ind. Eng. Chem. Res. 43(8) (2004) 1812-1819. [71] K. Ma, D. Jia, W. Bao, W. Zhao, J. Dongmin, W. Sun, Research progress in mass transfer enhancement by ultrasonic field, Chem. Ind. Eng. Prog. 29(1) (2010) 11-16. [72] P.R. Gogate, V.S. Sutkar, A.B. Pandit, Sonochemical reactors:Important design and scale up considerations with a special emphasis on heterogeneous systems, Chem. Eng. J. 166(3) (2011) 1066-1082. [73] A. Stankiewicz, Energy matters:Alternative sources and forms of energy for intensification of chemical and biochemical processes, Chem. Eng. Res. Des. 84(7) (2006) 511-521. [74] D.F. Rivas, P. Cintas, H.J. Gardeniers, Merging microfluidics and sonochemistry:Towards greener and more efficient micro-sono-reactors, Chem. Commun. 48(89) (2012) 10935-10947. [75] S. Hübner, S. Kressirer, D. Kralisch, C. Bludszuweit Philipp, K. Lukow, I. Jänich, A. Schilling, H. Hieronymus, C. Liebner, K. Jähnisch, Ultrasound and microstructures-a promising combination? ChemSusChem 5(2) (2012) 279-288. [76] Y. Iida, T. Tuziuti, K. Yasui, A. Towata, T. Kozuka, Bubble motions confined in a microspace observed with stroboscopic technique, Ultrason. Sonochem. 14(5) (2007) 621-626. [77] G.Q. Wang, Z.C. Xu, J.B. Ji, Progress on HiGee distillation-introduction to a new deviceand itsindustrial applications, Chem. Eng. Res. Des.89(8)(2011)1434-1442. [78] H. Zhao, L. Shao, J. Chen, High-gravity process intensification technology and application, Chem. Eng. J. 156(3) (2010) 588-593. [79] D.P. Rao, A. Bhowal, P.S. Goswami, Process intensification in rotating packed beds (HiGee):An appraisal, Ind. Eng. Chem. Res. 43(4) (2004) 1150-1162. [80] L. Sang, L. Yong, C. Guangwen, Z. Haikui, X. Yang, C. Jianfeng, Research progress of gas-liquid mass transfer enhancement in high gravity field, CIESC J. 66(1) (2015) 14-31(in Chinese). [81] J.R. Burns, J.N. Jamil, C. Ramshaw, Process intensification:Operating characteristics of rotating packed beds-determination of liquid hold-up for a high-voidage structured packing, Chem. Eng. Sci. 55(13) (2000) 2401-2415. [82] A. Elsenhans, Apparatus for Purifying Gas., U.S, Pat., 820772(1906). [83] P.G. Schmidt, Gas-Washer., U.S. Pat., 1051017(1913). [84] A. Placek, Distilling and Fractionating Apparatus, U.S. Pat., 1936523(1933). [85] A. Placek, Process of Evaporating Liquids and Apparatus for Carrying out the Same, U.S. Pat., 2349002(1944). [86] P. Adolph, Process and Apparatus for Treating Liquids with a Gaseous Medium, U.S. Pat., 2281616(1942). [87] K.P. Leonidovitch, Rectification Apparatus, U.S. Pat., 2593763(1952). [88] C.W. Pilo, Centrifugal Contact Apparatus, U.S. Pat., 3415501(1968). [89] Y. Li, X. Li, Y. Wang, Y. Chen, J. Ji, Y. Yu, Z. Xu, Distillation in a counterflow concentric-ring rotating bed, Ind. Eng. Chem. Res. 53(12) (2014) 4821-4837. [90] G.Q. Wang, C.F. Guo, Z.C. Xu, Y.M. Li, J.B. Ji, A new crossflow rotating bed, part 1:Distillation performance, Ind. Eng. Chem. Res. 53(10) (2014) 4030-4037. [91] Y. Luo, G. Chu, H. Zou, Y. Xiang, L. Shao, J. Chen, Characteristics of a two-stage counter-current rotating packed bed for continuous distillation, Chem. Eng. Process. 52(2012) 55-62. [92] W. Sung, Y. Chen, Characteristics of a rotating packed bed equipped with blade packings and baffles, Sep. Purif. Technol. 93(2012) 52-58. [93] G.Q. Wang, O.G. Xu, Z.C. Xu, J.B. Ji, New HiGee-rotating zigzag bed and its mass transfer performance, Ind. Eng. Chem. Res. 47(22) (2008) 8840-8846. [94] C. Lin, G. Jian, Characteristics of a rotating packed bed equipped with blade packings, Sep. Purif. Technol. 54(1) (2007) 51-60. [95] A. Chandra, P.S. Goswami, D.P. Rao, Characteristics of flow in a rotating packed bed (HiGee) with split packing, Ind. Eng. Chem. Res. 44(11) (2005) 4051-4060. [96] M.K. Shivhare, D.P. Rao, N. Kaistha, Mass transfer studies on split-packing and single-block packing rotating packed beds, Chem. Eng. Process. 71(2013) 115-124. [97] L. Agarwal, V. Pavani, D.P. Rao, N. Kaistha, Process intensification in HiGee absorption and distillation:Design procedure and applications, Ind. Eng. Chem. Res. 49(20) (2010) 10046-10058. [98] K. Guo, A study on liquid flowing inside the HiGee rotor, (Ph. D. Thesis) Beijing University of Chemical Technology, China, 1996. [99] Y. Chen, C. Lin, H. Liu, Mass transfer in a rotating packed bed with various radii of the bed, Ind. Eng. Chem. Res. 44(20) (2005) 7868-7875. [100] K. Yang, G. Chu, H. Zou, B. Sun, L. Shao, J. Chen, Determination of the effective interfacial area in rotating packed bed, Chem. Eng. J. 168(3) (2011) 1377-1382. [101] Y. Luo, G. Chu, H. Zou, F. Wang, Y. Xiang, L. Shao, J. Chen, Mass transfer studies in a rotating packed bed with novel rotors:Chemisorption of CO2, Ind. Eng. Chem. Res. 51(26) (2012) 9164-9172. [102] K. Guo, Z. Zhang, H. Luo, J. Dang, Z. Qian, An innovative approach of the effective mass transfer area in the rotating packed bed, Ind. Eng. Chem. Res. 53(10) (2014) 4052-4058. [103] L. Sang, Y. Luo, G. Chu, Y. Liu, X. Liu, J. Chen, Modeling and experimental studies of mass transfer in the cavity zone of a rotating packed bed, Chem. Eng. Sci. 170(SI) (2017) 355-364. [104] Y. Sun, Y. Zhang, X. Xiao, Progress of rotor structure of HiGee rotating bed, Chem. Ind. Eng. Prog. 34(01) (2015) 10-18. [105] J. Chen, The recent developments in the HiGee technology, Presentation to the GPE-EPIC Conference, Venice, Italy, 2009. [106] Z. Qian, Z. Li, K. Guo, Industrial applied and modeling research on selective H2S removal using a rotating packed bed, Ind. Eng. Chem. Res. 51(23) (2012) 8108-8116. [107] H. Chaumat, A. Billet, H. Delmas, Hydrodynamics and mass transfer in bubble column:Influence of liquid phase surface tension, Chem. Eng. Sci. 62(24) (2007) 7378-7390. [108] A. García-Abuín, D. Gómez-Díaz, M. Losada, J.M. Navaza, Bubble column gas-liquid interfacial area in a polymer+ surfactant+ water system, Chem. Eng. Sci. 75(2012) 334-341. [109] G. Hebrard, J. Zeng, K. Loubiere, Effect of surfactants on liquid side mass transfer coefficients:A new insight, Chem. Eng. J. 148(1) (2009) 132-138. [110] D.D. McClure, A.C. Lee, J.M. Kavanagh, D.F. Fletcher, G.W. Barton, Impact of surfactant addition on oxygen mass transfer in a bubble column, Chem. Eng. Technol. 38(1) (2015) 44-52. [111] M.K. Moraveji, M.M. Pasand, R. Davarnejad, Y. Chisti, Effects of surfactants on hydrodynamics and mass transfer in a split-cylinder airlift reactor, Can. J. Chem. Eng. 90(1) (2012) 93-99. [112] J. Aoki, K. Hayashi, S. Hosokawa, A. Tomiyama, Effects of surfactants on mass transfer from single carbon dioxide bubbles in vertical pipes, Chem. Eng. Technol. 38(11SI) (2015) 1955-1964. [113] X. Jia, W. Hu, X. Yuan, K. Yu, Effect of surfactant type on interfacial area and liquid mass transfer for CO2 absorption in a bubble column, Chin. J. Chem. Eng. 23(3) (2015) 476-481. [114] A. García-Abuín, D. Gómez-Díaz, J.M. Navaza, B. Sanjurjo, Effect of surfactant nature upon absorption in a bubble column, Chem. Eng. Sci. 65(15) (2010) 4484-4490. [115] J. Wang, Z. Wang, P. Lu, C. Yang, Z.S. Mao, Numerical simulation of the marangoni effect on transient mass transfer from single moving deformable drops, AIChE J. 57(10) (2011) 2670-2683. [116] M. Ramezani, M.J. Legg, A. Haghighat, Z. Li, R.D. Vigil, M.G. Olsen, Experimental investigation of the effect of ethyl alcohol surfactant on oxygen mass transfer and bubble size distribution in an air-water multiphase Taylor-Couette vortex bioreactor, Chem. Eng. J. 319(2017) 288-296. [117] M.K. Moraveji, B. Sajjadi, R. Davarnejad, Gas-liquid hydrodynamics and mass transfer in aqueous alcohol solutions in a split-cylinder airlift reactor, Chem. Eng. Technol. 34(3) (2011) 465-474. [118] Z. Zhang, T. Xu, W. Li, Z. Ji, G. Xu, Mass transfer enhancement of gas absorption by adding the dispersed organic phases, Chin. J. Chem. Eng. 19(6) (2011) 1066-1068. [119] N. Yang, Y. Chen, C. Liao, T. Chung, Improved absorption in gas-liquid systems by the addition of a low surface tension component in the gas and/or liquid phase, Ind. Eng. Chem. Res. 47(22) (2008) 8823-8827. [120] X. Jia, W. Hu, X. Yuan, K. Yu, Influence of the addition of ethanol to the gas phase on CO2 absorption in a bubble column, Ind. Eng. Chem. Res. 53(24) (2014) 10216-10224. [121] G.D. Zhang, W.F. Cai, C.J. Xu, M. Zhou, A general enhancement factor model of the physical absorption of gases in multiphase systems, Chem. Eng. Sci. 61(2) (2006) 558-568. [122] P.A. Ramachandran, M.M. Sharma, Absorption with fast reaction in a slurry containing sparingly soluble fine particles, Chem. Eng. Sci. 24(11) (1969) 1681-1686. [123] E. Alper, B. Wichtendahl, W. Deckwer, Gas absorption mechanism in catalytic slurry reactors, Chem. Eng. Sci. 35(1-2) (1980) 217-222. [124] W. Cai, J. Zhang, X. Zhang, Y. Wang, X. Qi, Enhancement of CO2 absorption under Taylor flow in the presence of fine particles, Chin. J. Chem. Eng. 21(2) (2013) 135-143. [125] P. Mena, A. Ferreira, J.A. Teixeira, F. Rocha, Effect of some solid properties on gas-liquid mass transfer in a bubble column, Chem. Eng. Process. 50(2) (2011) 181-188. [126] S.U. Choi, J.A. Eastman, Enhancing Thermal Conductivity of Fluids with Nanoparticles, Argonne National Lab, IL (United States), 1995. [127] S.H. Esmaeili-Faraj, M.N. Esfahany, Absorption of hydrogen sulfide and carbon dioxide in water based nanofluids, Ind. Eng. Chem. Res. 55(16) (2016) 4682-4690. [128] B. Olle, S. Bucak, T.C. Holmes, L. Bromberg, T.A. Hatton, D.I. Wang, Enhancement of oxygen mass transfer using functionalized magnetic nanoparticles, Ind. Eng. Chem. Res. 45(12) (2006) 4355-4363. [129] J.W. Lee, I.T. Pineda, J.H. Lee, Y.T. Kang, Combined CO2 absorption/regeneration performance enhancement by using nanoabsorbents, Appl. Energy 178(2016) 164-176. [130] R.L. Kars, R.J. Best, A. Drinkenburg, The sorption of propane in slurries of active carbon in water, Chem. Eng. J. 17(2) (1979) 201-210. [131] K.C. Ruthiya, J. Van der Schaaf, B. Kuster, J.C. Schouten, Modeling the effect of particle-to-bubble adhesion on mass transport and reaction rate in a stirred slurry reactor:Influence of catalyst support, Chem. Eng. Sci. 59(22) (2004) 5551-5558. [132] Y.T. Shah, The effect of solid wettability on gas-liquid mass transfer in a slurry bubble column, Chem. Eng. Sci. 45(12) (1990) 3593-3595. [133] W. Kim, H.U. Kang, K. Jung, S.H. Kim, Synthesis of silica nanofluid and application to CO2 absorption, Sep. Sci. Technol. 43(11-12) (2008) 3036-3055. [134] A. Schumpe, A.K. Saxena, L.K. Fang, Gas/liquid mass transfer in a slurry bubble column, Chem. Eng. Sci. 42(7) (1987) 1787-1796. [135] J. Jiang, Experimental and model study of gas-liquid mass transfer enhancement by nanoparticles, (Ph. D. Thesis) Tsinghua Univ., China, 2014. [136] W. Ehrfeld, V. Hessel, H. Löwe, Microreactors:New Technology for Modern Chemistry, WILEY-VCH Verlag GmbH, Weinheim, 2000. [137] J. Yue, G. Chen, Q. Yuan, L. Luo, Y. Gonthier, Hydrodynamics and mass transfer characteristics in gas-liquid flow through a rectangular microchannel, Chem. Eng. Sci. 62(7) (2007) 2096-2108. [138] S. Kuhn, K.F. Jensen, A pH-sensitive laser-induced fluorescence technique to monitor mass transfer in multiphase flows in microfluidic devices, Ind. Eng. Chem. Res. 51(26) (2012) 8999-9006. [139] P. Sobieszuk, R. Pohorecki, P. Cygański, J. Grzelka, Determination of the interfacial area and mass transfer coefficients in the Taylor gas-liquid flow in a microchannel, Chem. Eng. Sci. 66(23) (2011) 6048-6056. [140] N. Shao, A. Gavriilidis, P. Angeli, Mass transfer during Taylor flow in microchannels with and without chemical reaction, Chem. Eng. J. 160(3) (2010) 873-881. [141] J. Charpentier, Mass-transfer rates in gas-liquid absorbers and reactors, Adv. Chem. Eng. 11(1981) 1-133. [142] F.K. Kies, B. Benadda, M. Otterbein, Experimental study on mass transfer of a co-current gas-liquid contactor performing under high gas velocities, Chem. Eng. Process. 43(11) (2004) 1389-1395. [143] M.J. Nieves-Remacha, A.A. Kulkarni, K.F. Jensen, Gas-liquid flow and mass transfer in an advanced-flow reactor, Ind. Eng. Chem. Res. 52(26) (2013) 8996-9010. [144] A. Heyouni, M. Roustan, Z. Do-Quang, Hydrodynamics and mass transfer in gasliquid flow through static mixers, Chem. Eng. Sci. 57(16) (2002) 3325-3333. [145] V. Hessel, H. Löwe, F. Schönfeld, Micromixers-a review on passive and active mixing principles, Chem. Eng. Sci. 60(8) (2005) 2479-2501. [146] C.P. Stemmet, J.N. Jongmans, J. Van der Schaaf, B. Kuster, J.C. Schouten, Hydrodynamics of gas-liquid counter-current flow in solid foam packings, Chem. Eng. Sci. 60(22) (2005) 6422-6429. [147] C.P. Stemmet, J. Van Der Schaaf, B. Kuster, J.C. Schouten, Solid foam packings for multiphase reactors:Modelling of liquid holdup and mass transfer, Chem. Eng. Res. Des. 84(12) (2006) 1134-1141. [148] C.P. Stemmet, M. Meeuwse, J. Van der Schaaf, B. Kuster, J.C. Schouten, Gas-liquid mass transfer and axial dispersion in solid foam packings, Chem. Eng. Sci. 62(18) (2007) 5444-5450. [149] J. Lévêque, D. Rouzineau, M. Prévost, M. Meyer, Hydrodynamic and mass transfer efficiency of ceramic foam packing applied to distillation, Chem. Eng. Sci. 64(11) (2009) 2607-2616. [150] H. Li, Z. Hao, J. Murphy, X. Li, X. Gao, Experimental study of liquid renewal on the sheet of structured corrugation SiC foam packing and its dispersion coefficients, Chem. Eng. Sci. 180(2018) 11-19. [151] X. Ou, X. Zhang, T. Lowe, R. Blanc, M.N. Rad, Y. Wang, N. Batail, C. Pham, N. Shokri, A. Garforth, X-ray micro computed tomography characterization of cellular sic foams for their applications in chemical engineering, Mater. Charact. 123(2017) 20-28. [152] Y. Jiao, X. Fan, M. Perdjon, Z. Yang, J. Zhang, Vapor-phase transport (VPT) modification of zsm-5/sic foam catalyst using tpaoh vapor to improve the methanol-topropylene (MTP) reaction, Appl. Catal. A Gen. 545(2017) 104-112. [153] J. Zeng, The development and research of new structured packing, (Master's Thesis) Tianjin University, Tianjin, China, 2012. [154] J. Zhang, C. Tian, Z. Yang, X. Cao, Q. Liu, X. Li, X. Gao, A Preparation Methods and application of sic ceramic foam structured corrugated packing, China Pat (2010) 102218293. [155] X. Li, G. Gao, L. Zhang, H. Sui, H. Li, X. Gao, Z. Yang, C. Tian, J. Zhang, Multiscale simulation and experimental study of novel sic structured packings, Ind. Eng. Chem. Res. 51(2) (2011) 915-924. [156] H. Li, F. Wang, C. Wang, X. Gao, X. Li, Liquid flow behavior study in sic foam corrugated sheet using a novel ultraviolet fluorescence technique coupled with CFD simulation, Chem. Eng. Sci. 123(2015) 341-349. [157] X. Li, Q. Liu, H. Li, X. Gao, Experimental study on liquid flow behavior in the holes of sic structured corrugated sheets, J. Taiwan Inst. Chem. Eng. 64(2016) 39-46. [158] L. Zhang, X. Liu, X. Li, X. Gao, H. Sui, J. Zhang, Z. Yang, C. Tian, H. Li, A novel sic foam valve tray for distillation columns, Chin. J. Chem. Eng. 21(8) (2013) 821-826. [159] L. Zhang, X. Liu, H. Li, H. Sui, X. Li, J. Zhang, Z. Yang, C. Tian, G. Gao, Hydrodynamic and mass transfer performances of a new sic foam column tray, Chem. Eng. Technol. 35(12) (2012) 2075-2083. [160] H. Li, L. Fu, X. Li, X. Gao, Mechanism and analytical models for the gas distribution on the sic foam monolithic tray, AIChE J. 61(12) (2015) 4509-4516. [161] X. Gao, X. Li, X. Liu, H. Li, Z. Yang, J. Zhang, A novel potential application of sic ceramic foam material to distillation:Foam monolithic tray, Chem. Eng. Sci. 135(SI) (2015) 489-500. [162] H. Li, X. Li, X. Gao, B. Jiang, J. Zhang, Z. Yang, An Integral Foam Tray of Micro-Bubbly for Mass Transfer Column, China Pat (2012) 201210201341. [163] X. Li, X. Yang, H. Li, Q. Shi, X. Gao, Significantly enhanced vapor-liquid mass transfer in distillation process based on carbon foam ring random packing, Chem. Eng. Process. 124(2018) 245-254. [164] H. Li, Q. Shi, X. Yang, X. Li, X. Gao, Characterization of novel carbon foam corrugated structured packings with varied corrugation angle, Chem. Eng. Technol. 41(1) (2018) 182-191. [165] X. Li, Q. Shi, H. Li, Y. Yao, A.N. Pavlenko, X. Gao, Experimental characterization of novel sic foam corrugated structured packing with varied pore size and corrugation angle, J. Eng. Thermophys. Rus. 26(4) (2017) 452-465. [166] H. Cong, C. Wang, H. Li, X. Li, X. Gao, A.N. Pavlenko, Structure optimization of structured corrugation foam packing by computational fluid dynamics method, J. Eng. Thermophys. Rus. 25(3) (2016) 314-326. [167] H. Cong, C. Wang, X. Gao, X. Li, H. Li, A.N. Pavlenko, Pressure drop simulation of structured corrugation foam packing by computational fluid dynamics, J. Eng. Thermophys. Rus. 25(3) (2016) 301-313. [168] Z. Xu, Y. Lu, Y. Xie, Hydrodynamic and heat and mass transfer performances of novel ceramic foam packing to humidification tower, Appl. Therm. Eng. 87(2015) 707-713. [169] Z. Wang, M. Gupta, S.S. Warudkar, K.R. Cox, G.J. Hirasaki, M.S. Wong, Improved CO2 absorption in a gas-liquid countercurrent column using a ceramic foam contactor, Ind. Eng. Chem. Res. 55(5) (2016) 1387-1400. [170] J. Labuschagne, R. Meyer, Z.H. Chonco, J.M. Botha, D.J. Moodley, Application of water-tolerant co/β-SiC catalysts in slurry phase Fischer-Tropsch synthesis, Catal. Today 275(2016) 2-10. [171] R. Masson, V. Keller, N. Keller, B-sic alveolar foams as a structured photocatalytic support for the gas phase photocatalytic degradation of methylethylketone, Appl. Catal. B Environ. 170(2015) 301-311. [172] R. Tschentscher, T.A. Nijhuis, J. Van der Schaaf, B. Kuster, J.C. Schouten, Gas-liquid mass transferinrotating solid foamreactors, Chem. Eng. Sci. 65(1) (2010) 472-479. [173] H. Pennemann, V. Hessel, H. Löwe, Chemical microprocess technology-from laboratory-scale to production, Chem. Eng. Sci. 59(22) (2004) 4789-4794. [174] Y. Li, J. Luo, J. Zhou, L. Liao, Preparation of nano-aluminum hydroxide in rotating bed with helix channels by high-gravity reactive precipitation, Mater. Rev. S2(2006) 179-184. [175] G.Q. Wang, Z.C. Xu, Y.L. Yu, J.B. Ji, Performance of a rotating zigzag bed-a new HiGee, Chem. Eng. Process. 47(12) (2008) 2131-2139. [176] X. Gao, X. Liu, X. Li, J. Zhang, Y. Yang, H. Li, Continuous microwave-assisted reactive distillation column:Pilot-scale experiments and model validation, Chem. Eng. Sci. 186(2018) 251-264. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||