中国化学工程学报 ›› 2019, Vol. 27 ›› Issue (6): 1257-1271.DOI: 10.1016/j.cjche.2018.08.019
• Special Issue: Separation Process Intensification of Chemical Engineering • 上一篇 下一篇
Yi Liu
收稿日期:
2018-07-03
修回日期:
2018-07-25
出版日期:
2019-06-28
发布日期:
2019-08-19
作者简介:
Yi Liu,E-mail address:diligenliu@dlut.edu.cn
基金资助:
Yi Liu
Received:
2018-07-03
Revised:
2018-07-25
Online:
2019-06-28
Published:
2019-08-19
Supported by:
摘要: Recent decades witnessed the significant progress made in the research field of 2D molecular sieve membranes. In comparison with their 3D counterparts, 2D molecular sieve membranes possessed several unique advantages like significantly reduced membrane thickness (one atom thick in theory) and diversified molecular sieving mechanisms (in-plane pores within nanosheets & interlayer galleries between nanosheets). M. Tsapatsis first carried out pioneering work on fabrication of lamellar ZSM-5 membrane. Since then, diverse 2D materials typically including graphene oxides (GOs) have been fabricated into membranes showing promising prospects in energy-efficient gas separation, pervaporation, desalination and nanofiltration. In addition to GOs, other emerging 2D materials, including 2D zeolites, 2D metal-organic frameworks (MOFs), 2D covalent-organic frameworks (COFs), layered double hydroxides (LDHs), transition metal dichalcogenides (TMDCs), MXenes (typically Ti3C2TX), graphitic carbon nitrides (typically g-C3N4), hexagonal boron nitride (h-BN) and montmorillonites (MT) are showing intriguing performance in membrane-based separation process. This article summarized the most recent developments in the field of 2D molecular sieve membranes aside from GOs with particular emphasis on their structure-performance relationship and application prospects in industrial separation.
Yi Liu. Beyond graphene oxides: Emerging 2D molecular sieve membranes for efficient separation[J]. 中国化学工程学报, 2019, 27(6): 1257-1271.
Yi Liu. Beyond graphene oxides: Emerging 2D molecular sieve membranes for efficient separation[J]. Chinese Journal of Chemical Engineering, 2019, 27(6): 1257-1271.
[1] D.S. Sholl, R.P. Lively, Seven chemical separations to change the world, Nature 532(2016) 435-437. [2] H.B. Park, J. Kamcev, L.M. Robeson, M. Elimelech, B.D. Freeman, Maximizing the right stuff:The trade-off between membrane permeability and selectivity, Science 356(2017) 1138-1148. [3] K. Varoon, X.Y. Zhang, B. Elyassi, D.D. Brewer, M. Gettel, S. Kumar, J.A. Lee, S. Maheshwari, A. Mittal, C.Y. Sung, M. Cococcioni, L.F. Francis, A.V. McCormick, K.A. Mkhoyan, M. Tsapatsis, Dispersible exfoliated zeolite nanosheets and their application as a selective membrane, Science 334(2011) 72-75. [4] H. Li, Z.N. Song, X.J. Zhang, Y. Huang, S.G. Li, Y.T. Mao, H.J. Ploehn, Y. Bao, M. Yu, Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation, Science 342(2013) 95-98. [5] H.W. Kim, H.W. Yoon, S.-M. Yoon, B.M. Yoo, B.K. Ahn, Y.H. Cho, H.J. Shin, H. Yang, U. Paik, S. Kwon, J.-Y. Choi, H.B. Park, Selective gas transport through few-layered graphene and graphene oxide membranes, Science 342(2013) 91-95. [6] G.P. Liu, W.Q. Jin, N.P. Xu, Two-dimensional-material membranes:A new family of high-performance separation membranes, Angew. Chem. Int. Ed. 55(2016) 13384-13397. [7] J.Y. Zhu, J.W. Hou, A. Uliana, Y.T. Zhang, M.M. Tian, B. Van der Bruggen, The rapid emergence of two-dimensional nanomaterials for high-performance separation membranes, J. Mater. Chem. A 6(2018) 3773-3792. [8] A.K. Geim, Graphene:Status and prospects, Science 324(2009) 1530-1534. [9] S.P. Koenig, L.D. Wang, J. Pellegrino, J.S. Bunch, Selective molecular sieving through porous graphene, Nat. Nanotechnol. 7(2012) 728-732. [10] R.R. Nair, H.A. Wu, P.N. Jayaram, I.V. Grigorieva, A.K. Geim, Unimpeded permeation of water through helium-leak-tight graphene-based membranes, Science 335(2012) 442-444. [11] G.P. Liu, W.Q. Jin, N.P. Xu, Graphene-based membranes, Chem. Soc. Rev. (15) (2015) 5016-5030. [12] N. Song, X.L. Gao, Z. Ma, X.J. Wang, Y. Wei, C.J. Gao, A review of graphene-based separation membranes:Materials, characteristics, preparation and applications, Desalination 437(2018) 59-72. [13] W. Kim, S. Nair, Membranes from nanoporous 1D and 2D materials:A review of opportunities, developments, and challenges, Chem. Eng. Sci. 104(2013) 908-924. [14] X. Zhu, C.C. Tian, C.L. Do-Thanh, S. Dai, Two-dimensional materials as prospective scaffolds for mixed-matrix membrane-based CO2 separation, ChemSusChem 10(2017) 3304-3316. [15] Z.K. Zheng, R. Gruenker, X.L. Feng, Synthetic two-dimensional materials:A new paradigm of membranes for ultimate separation, Adv. Mater. 28(2016) 6529-6545. [16] A. Gugliuzza, A. Politano, E. Drioli, The advent of graphene and other two-dimensional materials in membrane science and technology, Curr. Opin. Chem. Eng. 16(2017) 78-85. [17] Y.L. Ying, Y.F. Yang, W. Ying, X.S. Peng, Two-dimensional materials for novel liquid separation membranes, Nanotechnology 27(2016) 332001. [18] Y.D. Zhao, Y.Z. Xie, Z.K. Liu, X.S. Wang, Y. Chai, F. Yan, Two-dimensional material membranes:An emerging platform for controllable mass transport applications, Small 10(2014) 4521-4542. [19] J. Choi, Z.P. Lai, S. Ghosh, D.E. Beving, Y.S. Yan, M. Tsapatsis, Layer-by-layer deposition of barrier and permselective c-oriented-MCM-22/silica composite membranes, Ind. Eng. Chem. Res. 46(2007) 7096-7106. [20] J. Choi, M. Tsapatsis, MCM-22/silica selective flake nanocomposite membranes for hydrogen separations, J. Am. Chem. Soc. 132(2010) 448-449. [21] M. Choi, K. Na, J. Kim, Y. Sakamoto, O. Terasaki, R. Ryoo, Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts, Nature 461(2009) 246-249. [22] K. Na, M. Choi, W. Park, Y. Sakamoto, O. Terasaki, R. Ryoo, Pillared MFI zeolite nanosheets of a single-unit-cell thickness, J. Am. Chem. Soc. 132(2010) 4169-4177. [23] H. Zhang, Q. Xiao, X.H. Guo, N.J. Li, P. Kumar, N. Rangnekar, M.Y. Jeon, S. Al-Thabaiti, K. Narasimharao, S.N. Basahel, B. Topuz, F.J. Onorato, C.W. Macosko, K.A. Mkhoyan, M. Tsapatsis, Open-pore two-dimensional MFI zeolite nanosheets for the fabrication of hydrocarbon-isomer-selective membranes on porous polymer supports, Angew. Chem. Int. Ed. 55(2016) 7184-7187. [24] D. Kim, M.Y. Jeon, B.L. Stottrup, M. Tsapatsis, para-Xylene ultra-selective zeolite MFI membranes fabricated from nanosheet monolayers at the air-water interface, Angew. Chem. Int. Ed. 57(2018) 480-485. [25] K.V. Agrawal, B. TopuZ, T.C.T. Pham, T.H. Nguyen, N. Sauer, N. Rangnekar, H. Zhang, K. Narasimharao, S.N. Basahel, L.F. Francis, C.W. Macosko, S. AlThabaiti, M. Tsapatsis, K.B. Yoon, Oriented MFI membranes by gel-less secondary growth of sub-100 nm MFI-nanosheet seed layers, Adv. Mater. 27(2015) 3243-3249. [26] M.Y. Jeon, D. Kim, P. Kumar, P.S. Lee, N. Rangnekar, P. Bai, M. Shete, B. Elyassi, H.S. Lee, K. Narasimharao, S.N. Basahel, S. Al-Thabaiti, W.Q. Xu, H.J. Cho, E.O. Fetisov, R. Thyagarajan, R.F. DeJaco, W. Fan, K.A. Mkhoyan, J.I. Siepmann, M. Tsapatsis, Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets, Nature 543(2017) 690-694. [27] S. Choi, J. Coronas, E. Jordan, W. Oh, S. Nair, F. Onorato, D.F. Shantz, M. Tsapatsis, Layered silicates by swelling of AMH-3 and nanocomposite membranes, Angew. Chem. Int. Ed. 47(2008) 552-555. [28] W. Kim, J.S. Lee, D.G. Bucknall, W.J. Koros, S. Nair, Nanoporous layered silicate AMH-3/cellulose acetate nanocomposite membranes for gas separations, J. Membr. Sci. 441(2013) 129-136. [29] A. Galve, D. Sieffert, E. Vispe, C. Tellez, J. Coronas, C. Staudt, Copolyimide mixed matrix membranes with oriented microporous titanosilicate JDF-L1 sheet particles, J. Membr. Sci. 370(2011) 131-140. [30] S. Castarlenas, P. Gorgojo, C. Casado-Coterillo, S. Masheshwari, M. Tsapatsis, C. Tellez, J. Coronas, Melt compounding of swollen titanosilicate JDF-L1 with polysulfone to obtain mixed matrix membranes for H2/CH4 separation, Ind. Eng. Chem. Res. 52(2013) 1901-1907. [31] A. Galve, D. Sieffert, C. Staudt, M. Ferrando, C. Guell, C. Tellez, J. Coronas, Combination of ordered mesoporous silica MCM-41 and layered titanosilicate JDF-L1 fillers for 6FDA-based copolyimide mixed matrix membranes, J. Membr. Sci. 431(2012) 163-170. [32] M.A. Camblor, A. Corma, M.J. Diaz-Cabanas, C. Baerlocher, Synthesis and structural characterization of MWW type zeolite ITQ-1, the pure silica analog of MCM-22 and SSZ-25, J. Phys. Chem. B 102(1998) 44-51. [33] M.H. Zhu, Y.S. Liu, Y.K. Yao, J.M. Jiang, F. Zhang, Z. Yang, Z.H. Lu, I. Kumakiri, X.S. Chen, H. Kita, Preparation and catalytic performance of Ti-MWW zeolite membrane for phenol hydroxylation, Microporous Mesoporous Mater. 268(2018) 84-87. [34] Y. Peng, Y.S. Li, Y.J. Ban, H. Jin, W.M. Jiao, X.L. Liu, W.S. Yang, Metal-organic framework nanosheets as building blocks for molecular sieving membranes, Science 346(2014) 1356-1359. [35] Y. Peng, Y.S. Li, Y.J. Ban, W.S. Yang, Two-dimensional metal-organic framework nanosheets for membrane-based gas separation, Angew. Chem. Int. Ed. 56(2017) 9757-9761. [36] X.R. Wang, C.L. Chi, K. Zhang, Y.H. Qian, K.M. Gupta, Z.X. Kang, J.W. Jiang, D. Zhao, Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation, Nat. Commun. 8(2017) 14460. [37] Z.X. Zhong, J.F. Yao, R.Z. Chen, Z.X. Low, M. He, J.Z. Liu, H.T. Wang, Oriented two-dimensional zeolitic imidazolate framework-L membranes and their gas permeation properties, J. Mater. Chem. A 3(2015) 15715-15722. [38] W.B. Li, P.C. Su, Z.J. Li, Z.H. Xu, F. Wang, H.S. Ou, J.H. Zhang, G.L. Zhang, E. Zeng, Ultrathin metal-organic framework membrane production by gel-vapour deposition, Nat. Commun. 8(2017) 406. [39] H.X. Ang, L. Hong, Polycationic polymer-regulated assembling of 2D MOF nanosheets for high-performance nanofiltration, ACS Appl. Mater. Interfaces 9(2017) 28079-28088. [40] T. Rodenas, I. Luz, G. Prieto, B. Seoane, H. Miro, A. Corma, F. Kapteijn, F.X. Llabres i Xamena, J. Gascon, Metal-organic framework nanosheets in polymer composite materials for gas separation, Nat. Mater. 14(2015) 48-55. [41] Z.X. Kang, Y.W. Peng, Z.G. Hu, Y.H. Qian, C.L. Chi, L.Y. Yeo, L. Tee, D. Zhao, Mixed matrix membranes composed of two-dimensional metal-organic framework nanosheets for pre-combustion CO2 capture:A relationship study of filler morphology versus membrane performance, J. Mater. Chem. A 3(2015) 20801-20810. [42] Y.D. Cheng, X.R. Wang, C.K. Jia, Y.X. Wang, L.Z. Zhai, Q. Wang, D. Zhao, Ultrathin mixed matrix membranes containing two-dimensional metal-organic framework nanosheets for efficient CO2/CH4 separation, J. Membr. Sci. 539(2017) 213-223. [43] G.H. Liu, Z.Y. Jiang, K.T. Cao, S. Nair, X.X. Cheng, J. Zhao, H. Gomaa, H. Wu, F.S. Pan, Pervaporation performance comparison of hybrid membranes filled with two-dimensional ZIF-L nanosheets and zero-dimensional ZIF-8 nanoparticles, J. Membr. Sci. 523(2017) 185-196. [44] Y. Lo, D.Y. Kang, Pseudopolymorphic seeding for the rational synthesis of hybrid membranes with a zeolitic imidazolate framework for enhanced molecular separation performance, J. Mater. Chem. A 4(2016) 4172-4179. [45] Y. Wang, J.P. Li, Q.Y. Yang, C.L. Zhong, Two-dimensional covalent triazine framework membrane for helium separation and hydrogen purification, ACS Appl. Mater. Interfaces 8(2016) 8694-8701. [46] M.M. Tong, Q.Y. Yang, Q.T. Ma, D.H. Liu, C.L. Zhong, Few-layered ultrathin covalent organic framework membranes for gas separation:A computational study, J. Mater. Chem. A 4(2016) 124-131. [47] G. Li, K. Zhang, T. Tsuru, Two-dimensional covalent organic framework (COF) membranes fabricated via the assembly of exfoliated COF nanosheets, ACS Appl. Mater. Interfaces 9(2017) 8433-8436. [48] Z.X. Kang, Y.W. Peng, Y.H. Qian, D.Q. Yuan, M.A. Addicoat, T. Heine, Z.G. Hu, L. Tee, Z.G. Guo, D. Zhao, Mixed matrix membranes (MMMs) comprising exfoliated 2D covalent organic frameworks (COFs) for efficient CO2 separation, Chem. Mater. 28(2016) 1277-1285. [49] Y.P. Ying, D.H. Liu, J. Ma, M.M. Tong, W.X. Zhang, H.L. Huang, Q.Y. Yang, C.L. Zhong, A GO-assisted method for the preparation of ultrathin covalent organic framework membranes for gas separation, J. Mater. Chem. A 4(2016) 13444-13449. [50] H.W. Fan, J.H. Gu, H. Meng, A. Knebel, J. Caro, High-flux membranes based on the covalent organic framework COF-LZU1 for selective dye separation by nanofiltration, Angew. Chem. Int. Ed. 57(2018) 4083-4087. [51] T.W. Kim, M. Sahimi, T.T. Tsotsis, The preparation and characterization of hydrotalcite thin films, Ind. Eng. Chem. Res. 48(2009) 5794-5801. [52] T.W. Kim, M. Sahimi, T.T. Tsotsis, The preparation and characterization of hydrotalcite micromembranes, Chem. Eng. Sci. 64(2009) 1585-1590. [53] T.W. Kim, M. Sahimi, T.T. Tsotsis, Preparation of hydrotalcite thin films using an electrophoretic technique, Ind. Eng. Chem. Res. 47(2008) 9127-9132. [54] Y. Liu, N.Y. Wang, Z.W. Cao, J. Caro, Molecular sieving through interlayer galleries, J. Mater. Chem. A 2(2014) 1235-1238. [55] Y. Liu, N.Y. Wang, J. Caro, In situ formation of LDH membranes of different microstructures with molecular sieve gas selectivity, J. Mater. Chem. A 2(2014) 5716-5723. [56] Y. Liu, J.H. Pan, N.Y. Wang, F. Steinbach, X.L. Liu, J. Caro, Remarkably enhanced gas separation by partial self-conversion of a laminated membrane to metal-organic frameworks, Angew. Chem. Int. Ed. 54(2015) 3028-3032. [57] J.Y. Liao, Z. Wang, C.Y. Gao, S.C. Li, Z.H. Qiao, M. Wang, S. Zhao, X.M. Xie, J.X. Wang, S.C. Wang, Fabrication of high-performance facilitated transport membranes for CO2 separation, Chem. Sci. 5(2014) 2843-2849. [58] Y. Liu, N.Y. Wang, L. Diestel, F. Steinbach, J. Caro, MOF membrane synthesis in the confined space of a vertically aligned LDH network, Chem. Commun. 50(2014) 4225-4227. [59] Y. Liu, N.Y. Wang, J.H. Pan, F. Steinbach, J. Caro, In situ synthesis of MOF membranes on ZnAl-CO3 LDH buffer layer-modified substrates, J. Am. Chem. Soc. 136(2014) 14353-14356. [60] Y. Liu, Y. Peng, N.Y. Wang, Y.S. Li, J.H. Pan, W.S. Yang, J. Caro, Significantly enhanced separation using ZIF-8 membranes by partial conversion of calcined layered double hydroxide precursors, ChemSusChem 8(2015) 3582-3586. [61] S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, A. Kis, 2D transition metal dichalcogenides, Nat. Rev. Mater. 2(2017) 17033. [62] J. Azamat, A. Khataee, Improving the performance of heavy metal separation from water using MoS2 membrane:Molecular dynamics simulation, Comput. Mater. Sci. 137(2017) 201-207. [63] W.F. Li, Y.M. Yang, J.K. Weber, G. Zhang, R.H. Zhou, Tunable, strain-controlled nanoporous MoS2 filter for water desalination, ACS Nano 10(2016) 1829-1835. [64] Y.D. Zhang, Z.S. Meng, Q. Shi, H.Q. Gao, Y.Z. Liu, Y.H. Wang, D.W. Rao, K.M. Deng, R.F. Lu, Nanoporous MoS2 monolayer as a promising membrane for purifying hydrogen and enriching methane, J. Phys. Condens. Matter 29(2017) 375201. [65] L.W. Sun, H.B. Huang, X.S. Peng, Laminar MoS2 membranes for molecular separation, Chem. Commun. 49(2013) 10718-10720. [66] D. Wang, Z.G. Wang, L. Wang, L. Hu, J. Jin, Ultrathin membranes of single-layered MoS2 nanosheets for high-performance hydrogen separation, Nanoscale 7(2015) 17649-17652. [67] A. Achari, S. Sahana, M. Eswaramoorthy, High performance MoS2 membranes:Effects of thermally driven phase transition on CO2 separation efficiency, Energy Environ. Sci. 9(2016) 1224-1228. [68] M.M. Deng, K. Kwac, M. Li, Y. Jung, H.G. Park, Stability, molecular sieving and ion diffusion selectivity of a lamellar membrane from two-dimensional molybdenum disulfide, Nano Lett. 17(2017) 2342-2348. [69] Z.Y. Wang, B.X. Mi, Environmental applications of 2D molybdenum disulfide (MoS2) nanosheets, Environ. Sci. Technol. 51(2017) 8229-8244. [70] W. Hirunpinyopas, E. Prestat, S.D. Worrall, S.J. Haigh, R.A.W. Dryfe, M.A. Bissett, Desalination and nanofiltration through functionalized laminar MoS2 membranes, ACS Nano 11(2017) 11082-11090. [71] D.K. Chen, W. Ying, Y. Guo, Y.L. Ying, X.S. Peng, Enhanced gas separation through nanoconfined ionic liquid in laminated MoS2 membrane, ACS Appl. Mater. Interfaces 9(2017) 44251-44257. [72] Y.J. Shen, H.X. Wang, X. Zhang, Y.T. Zhang, MoS2 nanosheets functionalized composite mixed matrix membrane for enhanced CO2 capture via surface drop-coating method, ACS Appl. Mater. Interfaces 8(2016) 23371-23378. [73] F.S. Pan, H. Ding, W.D. Li, Y.M. Song, H. Yang, H. Wu, Z.Y. Jiang, B.Y. Wang, X.Z. Cao, Constructing facilitated transport pathway in hybrid membranes by incorporating MoS2 nanosheets, J. Membr. Sci. 545(2018) 29-37. [74] L.W. Sun, Y.L. Ying, H.B. Huang, Z.G. Song, Y.Y. Mao, Z.P. Xu, X.S. Peng, Ultrafast molecular separation through layered WS2 nanosheet membranes, ACS Nano 8(2014) 6304-6311. [75] J.Y. Lin, R.X. Zhang, W.Y. Ye, N. Jullok, A. Sotto, B. Van der Bruggen, Nano-WS2 embedded PES membrane with improved fouling and permselectivity, J. Colloid Interface Sci. 396(2013) 120-128. [76] M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater. 23(2011) 4248-4253. [77] C.E. Ren, K.B. Hatzell, M. Alhabeb, Z. Ling, K.A. Mahmoud, Y. Gogotsi, Charge-and size-selective ion sieving through Ti3C2Tx MXene membranes, J. Phys. Chem. Lett. 6(2015) 4026-4031. [78] L. Ding, Y.Y. Wei, Y.J. Wang, H.B. Chen, J. Caro, H.H. Wang, A two-dimensional lamellar membrane:MXene nanosheet stacks, Angew. Chem. Int. Ed. 56(2017) 1825-1829. [79] G.Z. Liu, J. Shen, Q. Liu, G.P. Liu, J. Xiong, J. Yang, W.Q. Jin, Ultra-thin twodimensional MXene membrane for pervaporation desalination, J. Membr. Sci. 548(2018) 548-558. [80] L. Ding, Y.Y. Wei, L.B. Li, T. Zhang, H.H. Wang, J. Xue, L.X. Ding, S.Q. Wang, J. Caro, Y. Gogotsi, MXene molecular sieving membranes for highly efficient gas separation, Nat. Commun. 9(2018) 155. [81] L.B. Li, T. Zhang, Y.F. Duan, Y.Y. Wei, C.J. Dong, L. Ding, Z.W. Qiao, H.H. Wang, Selective gas diffusion in two-dimensional MXene lamellar membranes:Insights from molecular dynamics simulations, J. Mater. Chem. A 6(2018) 11734-11742. [82] J. Shen, G.Z. Liu, Y.F. Ji, Q. Liu, L. Cheng, K.C. Guan, M.C. Zhang, G.P. Liu, J. Xiong, J. Yang, W.Q. Jin, 2D MXene nanofilms with tunable gas transport channels, Adv. Funct. Mater. (2018) 1801511. [83] K.M. Kang, D.W. Kim, C.E. Ren, K.M. Cho, S.J. Kim, J.H. Choi, Y.T. Nam, Y. Gogotsi, H.T. Jung, Selective molecular separation on Ti3C2Tx-graphene oxide membranes during pressure-driven filtration:Comparison with graphene oxide and MXenes, ACS Appl. Mater. Interfaces 9(2017) 44687-44694. [84] X.L. Wu, L. Hao, J.K. Zhang, X. Zhang, J.T. Wang, J.D. Liu, Polymer-Ti3C2Tx composite membranes to overcome the trade-off in solvent resistant nanofiltration for alcohol-based system, J. Membr. Sci. 515(2016) 175-188. [85] L. Hao, H.Q. Zhang, X.L. Wu, J.K. Zhang, J.T. Wang, Y.F. Li, Novel thin-film nanocomposite membranes filled with multi-functional Ti3C2Tx nanosheets for task-specific solvent transport, Compos. A:Appl. Sci. Manuf. 100(2017) 139-149. [86] A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.O. Mgller, R. Schlçgl, J.M. Carlsson, Graphitic carbon nitride materials:Variation of structure and morphology and their use as metal-free catalysts, J. Mater. Chem. 18(2008) 4893-4908. [87] F. Li, Y.Y. Qu, M.W. Zhao, Efficient helium separation of graphitic carbon nitride membrane, Carbon 95(2015) 51-57. [88] Y.J. Wang, L.B. Li, Y.Y. Wei, J. Xue, H. Chen, L. Ding, J. Caro, H.H. Wang, Water transport with ultralow friction through partially exfoliated g-C3N4 nanosheet membranes with self-supporting spacers, Angew. Chem. Int. Ed. 56(2017) 8974-8980. [89] Y.J. Wang, L.F. Liu, J. Xue, J.M. Hou, L. Ding, H.H. Wang, Enhanced water flux through graphitic carbon nanosheets membrane by incorporating polyacrylic acid, AIChE J. 64(2018) 2181-2188. [90] X. Gao, Y.M. Li, X.L. Yang, Y.N. Shang, Y. Wang, B.Y. Gao, Z.N. Wang, Highly permeable and antifouling reverse osmosis membranes with acidified graphitic carbon nitride nanosheets as nanofillers, J. Mater. Chem. A 5(2017) 19875-19883. [91] Z.Z. Tian, S.F. Wang, Y.T. Wang, X.R. Ma, K.T. Cao, D.D. Peng, X.Y. Wu, H. Wu, Z.Y. Jiang, Enhanced gas separation performance of mixed matrix membranes from graphitic carbon nitride nanosheets and polymers of intrinsic microporosity, J. Membr. Sci. 514(2016) 15-24. [92] K.T. Cao, Z.Y. Jiang, X.S. Zhang, Y.M. Zhang, J. Zhao, R.S. Xing, S. Yang, C.Y. Gao, F.S. Pan, Highly water-selective hybrid membrane by incorporating g-C3N4 nanosheets into polymer matrix, J. Membr. Sci. 490(2015) 72-83. [93] J. Wang, M.S. Li, S.Y. Zhou, A.L. Xue, Y. Zhang, Y.J. Zhao, J. Zhong, Q. Zhang, Graphitic carbon nitride nanosheets embedded in poly(vinyl alcohol) nanocomposite membranes for ethanol dehydration via pervaporation, Sep. Purif. Technol. 188(2017) 24-37. [94] Y.Q. Wang, R.W. Ou, H.T. Wang, T.W. Xu, Graphene oxide modified graphitic carbon nitride as a modifier for thin film composite forward osmosis membrane, J. Membr. Sci. 475(2015) 281-289. [95] H.X. Zhao, S. Chen, X. Quan, H.T. Yu, H.M. Zhao, Integration of microfiltration and visible-light-driven photocatalysis on g-C3N4 nanosheet/reduced graphene oxide membrane for enhanced water treatment, Appl. Catal. B Environ. 194(2016) 134-140. [96] C. Chen, J.M. Wang, D. Liu, C. Yang, Y.C. Liu, R.S. Ruoff, W.W. Lei, Functionalized boron nitride membranes with ultrafast solvent transport performance for molecular separation, Nat. Commun. 9(2018) 1902. [97] Z.H. Qiao, S. Zhao, J.X. Wang, S.C. Wang, Z. Wang, M.D. Guiver, A highly permeable aligned montmorillonite mixed-matrix membrane for CO2 separation, Angew. Chem. Int. Ed. 55(2016) 9321-9325. [98] M.T. Zhao, Y.X. Wang, Q.L. Ma, Y. Huang, X. Zhang, J.F. Ping, Z.C. Zhang, Q.P. Lu, Y.F. Yu, H. Xu, Y.L. Zhao, H. Zhang, Ultrathin 2D metal-organic framework nanosheets, Adv. Mater. 27(2015) 7372-7378. [99] R. Makiura, O. Konovalov, Bottom-up assembly of ultrathin sub-micron size metal-organic framework sheets, Dalton Trans. 42(2013) 15931-15936. [100] J.F. Yu, B.R. Martin, A. Clearfield, Z.P. Luo, L.Y. Sun, One-step direct synthesis of layered double hydroxide single-layer nanosheets, Nanoscale 7(2015) 9448-9451. [101] S.P. Surwade, S.N. Smirnov, I.V. Vlassiouk, R.R. Unocic, G.M. Veith, S. Dai, S.M. Mahurin, Water desalination using nanoporous single-layer graphene, Nat. Nanotechnol. 10(2015) 459-464. [102] H. Li, L. Daukiya, S. Haldar, A. Lindblad, B. Sanyal, O. Eriksson, D. Aubel, S. Hajjar-Garreau, L. Simon, K. Leifer, Site-selective local fluorination of graphene induced by focused ion beam irradiation, Sci. Rep. 6(2016) 19719. [103] X.L. Lu, R.G. Wang, L.F. Hao, F. Yang, W.C. Jiao, P. Peng, F. Yuan, W.B. Liu, Oxidative etching of MoS2/WS2 nanosheets to their QDs by facile UV irradiation, Phys. Chem. Chem. Phys. 18(2016) 31211-31216. |
[1] | Pan Wang, Mengdei Zhou, Zhuangxin Wei, Lu Liu, Tao Cheng, Xiaohua Tian, Jianming Pan. Preparation of bowl-shaped polydopamine surface imprinted polymer composite adsorbent for specific separation of 2′-deoxyadenosine[J]. 中国化学工程学报, 2023, 60(8): 69-79. |
[2] | Xinxin Li, Hongwei Shao, Shichao Zhang, Yong Li, Jingjing Gu, Qiang Huang, Jin Ran. Two dimensional MoS2 finding its way towards constructing high-performance alkaline recovery membranes[J]. 中国化学工程学报, 2023, 60(8): 155-164. |
[3] | Wenwen Zhang, Zhigang Xue, Liyun Cui, Haoliang Gao, Di Zhao, Rongfei Zhou, Weihong Xing. Synthesis of an IMF zeolite membrane for the separation of xylene isomer[J]. 中国化学工程学报, 2023, 60(8): 205-211. |
[4] | Hammad Saulat, Jianhua Yang, Tao Yan, Waseem Raza, Wensen Song, Gaohong He. Tungsten incorporated mobil-type eleven zeolite membranes: Facile synthesis and tuneable wettability for highly efficient separation of oil/water mixtures[J]. 中国化学工程学报, 2023, 60(8): 242-252. |
[5] | Yuan Liu, Hanting Xiong, Jingwen Chen, Shixia Chen, Zhenyu Zhou, Zheling Zeng, Shuguang Deng, Jun Wang. One-step ethylene separation from ternary C2 hydrocarbon mixture with a robust zirconium metal-organic framework[J]. 中国化学工程学报, 2023, 59(7): 9-15. |
[6] | Borui Liu, Tao Zhang, Yi Zheng, Kailong Li, Hui Pan, Hao Ling. A dynamic control structure of liquid-only transfer stream distillation column[J]. 中国化学工程学报, 2023, 59(7): 135-145. |
[7] | Yafei Su, Xuke Zhang, Hui Li, Donglai Peng, Yatao Zhang. In-situ incorporation of halloysite nanotubes with 2D zeolitic imidazolate framework-L based membrane for dye/salt separation[J]. 中国化学工程学报, 2023, 58(6): 103-111. |
[8] | Shuangtai Liu, Lei He, Qiuxiang Yao, Xi Li, Linyang Wang, Jing Wang, Ming Sun, Xiaoxun Ma. Separation and analysis of six fractions in low temperature coal tar by column chromatography[J]. 中国化学工程学报, 2023, 58(6): 256-265. |
[9] | Wende Tian, Jiawei Zhang, Zhe Cui, Haoran Zhang, Bin Liu. Microscopic mechanism study and process optimization of dimethyl carbonate production coupled biomass chemical looping gasification system[J]. 中国化学工程学报, 2023, 58(6): 291-305. |
[10] | Haodi Tan, Minjiao Yang, Yingquan Chen, Xu Chen, Francesco Fantozzi, Pietro Bartocci, Roman Tschentscher, Federica Barontini, Haiping Yang, Hanping Chen. Preparation of aromatic hydrocarbons from catalytic pyrolysis of digestate[J]. 中国化学工程学报, 2023, 57(5): 1-9. |
[11] | Hui Yi Leong, Xiao-Qian Fu, Xiang-Yu Liu, Shan-Jing Yao, Dong-Qiang Lin. Characterisation and separation of infectious bursal disease virus-like particles using aqueous two-phase systems[J]. 中国化学工程学报, 2023, 57(5): 72-78. |
[12] | Yujia Cui, Zhiqiang Tan, Yanan Wang, Shuxian Shi, Xiaonong Chen. One-step crosslinking preparation of tannic acid particles for the adsorption and separation of cationic dyes[J]. 中国化学工程学报, 2023, 57(5): 309-318. |
[13] | Xingzhong Li, Kunlin Yu, Zibo He, Bo Liu, Rongfei Zhou, Weihong Xing. Improved SSZ-13 thin membranes fabricated by seeded-gel approach for efficient CO2 capture[J]. 中国化学工程学报, 2023, 56(4): 273-280. |
[14] | Wufeng Wu, Xilu Hong, Jiang Fan, Yanying Wei, Haihui Wang. Research progress on the substrate for metal–organic framework (MOF) membrane growth for separation[J]. 中国化学工程学报, 2023, 56(4): 299-313. |
[15] | Taoyan Mao, Runhui Xiao, Peng Liu, Jiale Chen, Junqiang Luo, Su Luo, Fengwei Xie, Cheng Zheng. Facile fabrication of durable superhydrophobic fabrics by silicon polyurethane membrane for oil/water separation[J]. 中国化学工程学报, 2023, 55(3): 73-83. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||