[1] P. Kumar, D. Kunzru, Modeling of naphtha pyrolysis, Ind. Eng. Chem. Process. Des. Dev. 24(3) (1985) 774-782.[2] M. Van Goethem, F. Kleinendorst, N. van Velzen, M. Dente, E. Ranzi, Equation based spyro model and optimiser for the modelling of the steam cracking process, Escape-12 Supplementary Proceedings 2002, pp. 26-29.[3] E. Ranzi, A. Frassoldati, G. Silvia, T. Faravelli, Wide-range kinetic modeling study of the pyrolysis, partial oxidation, and combustion of heavy n-alkanes, Ind. Eng. Chem. Res. 44(14) (2005) 5170-5183.[4] Z. Fang, T. Qiu, W. Zhou, Coupled simulation of recirculation zonal firebox model and detailed kinetic reactor model in an industrial ethylene cracking furnace, Chin. J. Chem. Eng. 25(8) (2017) 1091-1100.[5] P. Erdi, J. Toth, Mathematical Models of Chemical Reactions:Theory and Applications of Deterministic and Stochastic Models, Manchester University Press, 1989.[6] C.W. Gear, The automatic integration of ordinary differential equations, Commun. ACM 14(3) (1971) 176-179.[7] U.S. Bhalla, Understanding complex signaling networks through models and metaphors, Prog. Biophys. Mol. Biol. (ISSN:0079-6107) 81(1) (2003) 45-65.[8] G.P. Wagner, M. Pavlicev, J.M. Cheverud, The road to modularity, Nat. Rev. Genet. 8(12) (2007) 921-931.[9] B.R. Hough, D.A.C. Beck, D.T. Schwartz, J. Pfaendtner, Application of ma-chine learning to pyrolysis reaction networks:Reducing model solution time to enable process optimization, Comput. Chem. Eng. 104(Supplemen-t C) (2017) 56-63.[10] M. Zhang, X. Liu, Z. Zhang, A soft sensor for industrial melt index prediction based on evolutionary extreme learning machine, Chin. J. Chem. Eng. 24(8) (2016) 1013-1019.[11] B. Shi, X. Yang, L. Yan, Optimization of a crude distillation unit using a combination of wavelet neural network and line-up competition algorithm, Chin. J. Chem. Eng. 25(8) (2017) 1013-1021.[12] Q. Zhu, Y. Jia, D. Peng, Y. Xu, Study and application of fault prediction methods with improved reservoir neural networks, Chin. J. Chem. Eng. 22(7) (2014) 812-819.[13] Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, Gradient-Based Learning Applied to Document Recognition, IEEE, 19982278-2324.[14] Y.L. Cun, B. Boser, J.S. Denker, R.E. Howard, W. Habbard, L.D. Jackel, D. Hen-Derson, Handwritten digit recognition with a back-propagation network, Advances in Neural Information Processing Systems 1990, pp. 396-404.[15] Hecht-Nielsen, Theory of the Backpropagation Neural Network, International Joint Conference on Neural Networks, vol. 1, 2002593-605.[16] A. Wagner, D.A. Fell, The small world inside large metabolic networks, Proc. R. Soc. Lond. B Biol. Sci. 268(1478) (2001) 1803-1810.[17] L. Zhang, B. Chen, T. Qiu, A multi-scale model of naphtha pyrolysis process, 11th International Symposium on Process Systems Engineering-PSE2012, vol. 15, Elsevier 2012, p. 120.[18] M. Dente, E. Ranzi, G. Bozzano, S. Pierucci, F.I. Kleinendorst, M.W. van Goethem, Pyrolysis of naphtha feedstocks:automatic generation of detailed kinetics and lumping procedures, Comput. Aided Chem. Eng. 28(2010) 823-828.[19] M. Bastian, S. Heymann, M. Jacomy, et al., Gephi:an open source software for exploring and manipulating networks, ICWSM 8(2009) 361-362.[20] M. Niepert, M. Ahmed, K. Kutzkov, Learning convolutional neural networks for graphs, International Conference on Machine Learning 2016, pp. 2014-2023.[21] R. Kondor, N. Shervashidze, K.M. Borgwardt, The graphlet spectrum, Proceedings of the 26th Annual International Conference on Machine Learning, ACM 2009, pp. 529-536.[22] N. Shervashidze, S. Vishwanathan, T. Petri, K. Mehlhorn, K. Borgwardt, Efficient graphlet kernels for large graph comparison, Artificial Intelligence and Statistics 2009, pp. 488-495.[23] S. Wernicke, Efficient detection of network motifs, IEEE ACM Trans. Comput. Biol. Bioinforma. 4(3) (2006) 347-359.[24] S. Wernicke, F. Rasche, FANMOD:A tool for fast network motif detection, Bioinformatics 22(9) (2006) 1152-1153.[25] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, U. Alon, Network motifs:Simple building blocks of complex networks, Science 298(5594) (2002) 824-827.[26] S.S. Maslov, U.K. Alon, Correlation profiles and motifs in complex networks, Tech. Rep, Brookhaven National Laboratory (US), 2004.[27] G.B. Orr, K.-R. Muller, Neural Networks:Tricks of The Trade, Springer, 2003.[28] X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics 2010, pp. 249-256.[29] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, G. Wang, Recent advances in convolutional neural networks, Comput. Sci. (2017), URL http://arxiv.org/abs/1512.07108.[30] A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep convolutional neural networks, International Conference on Neural Information Processing Systems 2012, pp. 1097-1105.[31] V. Nair, G.E. Hinton, Rectified linear units improve restricted Boltzmann machines, International Conference on Machine Learning 2010, pp. 807-814.[32] G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, R.R. Salakhutdinov, Improving neural networks by preventing co-adaptation of feature detectors, Comput. Sci. 3(4) (2012) 212-223.[33] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhouck-E, A. Rabinovich, Going deeper with convolutions, Computer Vision and Pattern Recognition 2015, pp. 1-9.[34] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the inception architecture for computer vision, Computer Vision and Pattern Recognition 2016, pp. 2818-2826.[35] W. Zhou, T. Qiu, Zone modeling of radiative heat transfer in industrial furnaces using adjusted Monte-Carlo integral method for direct exchange area calculation, Appl. Therm. Eng. 81(2015) 161-167. |