中国化学工程学报 ›› 2019, Vol. 27 ›› Issue (6): 1324-1338.DOI: 10.1016/j.cjche.2018.11.004
• Special Issue: Separation Process Intensification of Chemical Engineering • 上一篇 下一篇
Peng Tan, Yao Jiang, Xiaoqin Liu, Linbing Sun
收稿日期:
2018-08-30
修回日期:
2018-09-28
出版日期:
2019-06-28
发布日期:
2019-08-19
通讯作者:
Xiaoqin Liu, Linbing Sun
基金资助:
Peng Tan, Yao Jiang, Xiaoqin Liu, Linbing Sun
Received:
2018-08-30
Revised:
2018-09-28
Online:
2019-06-28
Published:
2019-08-19
Contact:
Xiaoqin Liu, Linbing Sun
Supported by:
摘要: Magnetically responsive porous materials possess unique properties in adsorption processes such as magneticinduced separation and heat generation in alternating magnetic fields, which greatly facilitates recycling procedures, favors long-term operation, and improves desorption rate, making conventional adsorption processes highly efficient. With increasing interest in magnetic adsorbents, great progress has been made in designing and understanding of magnetically responsive porous materials varying from monoliths to nanoscale particles used for adsorption including oil uptake, removal of hazardous substances from water, deep desulfurization of fuels, and CO2 capture in the past few years. Therefore, a review summarizing the advanced strategies of synthesizing these magnetically responsive adsorbents and the utilization of their magnetism in practical applications is highly desired. In this review, we give a comprehensive overview of this emerging field, highlighting the strategies of exquisitely incorporating magnetism to porous materials and subtly exploiting their magnetic responsiveness. Further innovations for fabricating or utilizing magnetic adsorbents are expected to be fueled. The potential opportunities and challenges are also discussed.
Peng Tan, Yao Jiang, Xiaoqin Liu, Linbing Sun. Magnetically responsive porous materials for efficient adsorption and desorption processes[J]. 中国化学工程学报, 2019, 27(6): 1324-1338.
Peng Tan, Yao Jiang, Xiaoqin Liu, Linbing Sun. Magnetically responsive porous materials for efficient adsorption and desorption processes[J]. Chinese Journal of Chemical Engineering, 2019, 27(6): 1324-1338.
[1] D.S. Sholl, R.P. Lively, Seven chemical separations to change the world, Nature 532(2016) 435-437. [2] P. Nugent, Y. Belmabkhout, S.D. Burd, A.J. Cairns, R. Luebke, K. Forrest, T. Pham, S. Ma, B. Space, L. Wojtas, M. Eddaoudi, M.J. Zaworotko, Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation, Nature 495(2013) 80-84. [3] Y. Jiang, P. Tan, Y.-H. Kang, Z.-M. Xing, L. Cheng, L. Zhu, X.-Q. Liu, L.-B. Sun, Fabrication of adsorbents with thermocontrolled molecular gates for both selective adsorption and efficient regeneration, Adv. Mater. Interfaces 3(2016) 1500829. [4] Y. Jiang, S.-F. Shan, W. Liu, J. Zhu, Q.-X. He, P. Tan, L. Cheng, X.-Q. Liu, L.-B. Sun, Rational design of thermo-responsive adsorbents:Demand-oriented active sites for the adsorption of dyes, Chem. Commun. 53(2017) 9538-9541. [5] J. Zhu, J.-J. Ding, X.-Q. Liu, P. Tan, L.-B. Sun, Realizing both selective adsorption and efficient regeneration using adsorbents with photo-regulated molecular gates, Chem. Commun. 52(2016) 4006-4009. [6] Y. Jiang, P. Tan, L. Cheng, S.-F. Shan, X.-Q. Liu, L.-B. Sun, Selective adsorption and efficient regeneration via smart adsorbents possessing thermo-controlled molecular switches, Phys. Chem. Chem. Phys. 18(2016) 9883-9887. [7] J.-J. Ding, J. Zhu, Y.-X. Li, X.-Q. Liu, L.-B. Sun, Smart adsorbents functionalized with thermoresponsive polymers for selective adsorption and energy-saving regeneration, Ind. Eng. Chem. Res. 56(2017) 4341-4349. [8] L. Cheng, Y. Jiang, N. Yan, S.-F. Shan, X.-Q. Liu, L.-B. Sun, Smart adsorbents with photoregulated molecular gates for both selective adsorption and efficient regeneration, ACS Appl. Mater. Interfaces 8(2016) 23404-23411. [9] J. Zhu, P. Tan, P.-P. Yang, X.-Q. Liu, Y. Jiang, L.-B. Sun, Smart adsorbents with reversible photo-regulated molecular switches for selective adsorption and efficient regeneration, Chem. Commun. 52(2016) 11531-11534. [10] M. Feng, P. Zhang, H.-C. Zhou, V.K. Sharma, Water-stable metal-organic frameworks for aqueous removal of heavy metals and radionuclides:A review, Chemosphere 209(2018) 783-800. [11] D.K. Yoo, H.J. An, N.A. Khan, G.T. Hwang, S.H. Jhung, Record-high adsorption capacities of polyaniline-derived porous carbons for the removal of personal care products from water, Chem. Eng. J. 352(2018) 71-78. [12] M. Sarker, J.Y. Song, S.H. Jhung, Adsorptive removal of anti-inflammatory drugs from water using graphene oxide/metal-organic framework composites, Chem. Eng. J. 335(2018) 74-81. [13] A.M. Fracaroli, H. Furukawa, M. Suzuki, M. Dodd, S. Okajima, F. Gandara, J.A. Reimer, O.M. Yaghi, Metal-organic frameworks with precisely designed interior for carbon dioxide capture in the presence of water, J. Am. Chem. Soc. 136(2014) 8863-8866. [14] B. Dutcher, M.H. Fan, A.G. Russell, Amine-based CO2 capture technology development from the beginning of 2013-a review, ACS Appl. Mater. Interfaces 7(2015) 2137-2148. [15] T.M. McDonald, J.A. Mason, X.Q. Kong, E.D. Bloch, D. Gygi, A. Dani, V. Crocella, F. Giordanino, S.O. Odoh, W.S. Drisdell, B. Vlaisavljevich, A.L. Dzubak, R. Poloni, S.K. Schnell, N. Planas, K. Lee, T. Pascal, L.W.F. Wan, D. Prendergast, J.B. Neaton, B. Smit, J.B. Kortright, L. Gagliardi, S. Bordiga, J.A. Reimer, J.R. Long, Cooperative insertion of CO2 in diamine-appended metal-organic frameworks, Nature 519(2015) 303-308. [16] N.A. Khan, S.H. Jhung, Remarkable adsorption capacity of CuCl2-loaded porous vanadium benzenedicarboxylate for benzothiophene, Angew. Chem. Int. Ed. 51(2012) 1198-1201. [17] K.A. Cychosz, A.G. Wong-Foy, A.J. Matzger, Liquid phase adsorption by microporous coordination polymers:Removal of organosulfur compounds, J. Am. Chem. Soc. 130(2008) 6938-6939. [18] K.A. Cychosz, A.G. Wong-Foy, A.J. Matzger, Enabling cleaner fuels:Desulfurization by adsorption to microporous coordination polymers, J. Am. Chem. Soc. 131(2009) 14538-14543. [19] I. Ahmed, S.H. Jhung, Adsorptive desulfurization and denitrogenation using metalorganic frameworks, J. Hazard. Mater. 301(2016) 259-276. [20] X.L. Cui, K.J. Chen, H.B. Xing, Q.W. Yang, R. Krishna, Z.B. Bao, H. Wu, W. Zhou, X.L. Dong, Y. Han, B. Li, Q.L. Ren, M.J. Zaworotko, B.L. Chen, Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene, Science 353(2016) 141-144. [21] B. Li, X.L. Cui, D. O'Nolan, H.M. Wen, M.D. Jiang, R. Krishna, H. Wu, R.B. Lin, Y.S. Chen, D.Q. Yuan, H.B. Xing, W. Zhou, Q.L. Ren, G.D. Qian, M.J. Zaworotko, B.L. Chen, An ideal molecular sieve for acetylene removal from ethylene with record selectivity and productivity, Adv. Mater. 29(2017) 1704210. [22] L.F. Yang, X.L. Cui, Q.W. Yang, S.H. Qian, H. Wu, Z.B. Bao, Z.G. Zhang, Q.L. Ren, W. Zhou, B.L. Chen, H.B. Xing, A single-molecule propyne trap:Highly efficient removal of propyne from propylene with anion-pillared ultramicroporous materials, Adv. Mater. 30(2018) 1705374. [23] R. Du, Q.C. Zhao, Z. Zheng, W.P. Hu, J. Zhang, 3d self-supporting porous magnetic assemblies for water remediation and beyond, Adv. Energy Mater. 6(2016) 1600473. [24] J.H. Gao, H.W. Gu, B. Xu, Multifunctional magnetic nanoparticles:Design, synthesis, and biomedical applications, Acc. Chem. Res. 42(2009) 1097-1107. [25] R. Hao, R.J. Xing, Z.C. Xu, Y.L. Hou, S. Gao, S.H. Sun, Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles, Adv. Mater. 22(2010) 2729-2742. [26] L.H. Reddy, J.L. Arias, J. Nicolas, P. Couvreur, Magnetic nanoparticles:Design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications, Chem. Rev. 112(2012) 5818-5878. [27] Y.W. Jun, J.H. Lee, J. Cheon, Chemical design of nanoparticle probes for highperformance magnetic resonance imaging, Angew. Chem. Int. Ed. 47(2008) 5122-5135. [28] J.M. Shin, R.M. Anisur, M.K. Ko, G.H. Im, J.H. Lee, I.S. Lee, Hollow manganese oxide nanoparticles as multifunctional agents for magnetic resonance imaging and drug delivery, Angew. Chem. Int. Ed. 48(2009) 321-324. [29] J.E. Lee, N. Lee, H. Kim, J. Kim, S.H. Choi, J.H. Kim, T. Kim, I.C. Song, S.P. Park, W.K. Moon, T. Hyeon, Uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery, J. Am. Chem. Soc. 132(2010) 552-557. [30] J. Liu, T. Gottschall, K.P. Skokov, J.D. Moore, O. Gutfleisch, Giant magnetocaloric effect driven by structural transitions, Nat. Mater. 11(2012) 620-626. [31] T. Krenke, E. Duman, M. Acet, E.F. Wassermann, X. Moya, L. Manosa, A. Planes, Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys, Nat. Mater. 4(2005) 450-454. [32] B.G. Shen, J.R. Sun, F.X. Hu, H.W. Zhang, Z.H. Cheng, Recent progress in exploring magnetocaloric materials, Adv. Mater. 21(2009) 4545-4564. [33] P. Calcagnile, D. Fragouli, I.S. Bayer, G.C. Anyfantis, L. Martiradonna, P.D. Cozzoli, R. Cingolani, A. Athanassiou, Magnetically driven floating foams for the removal of oil contaminants from water, ACS Nano 6(2012) 5413-5419. [34] A.F. Ngomsik, A. Bee, M. Draye, G. Cote, V. Cabuil, Magnetic nano-and microparticles for metal removal and environmental applications:A review, C. R. Chim. 8(2005) 963-970. [35] H.Q. Li, M.R. Hill, Low-energy CO2 release from metal-organic frameworks triggered by external stimuli, Acc. Chem. Res. 50(2017) 778-786. [36] H.Q. Li, M.M. Sadiq, K. Suzuki, R. Ricco, C. Doblin, A.J. Hill, S. Lim, P. Falcaro, M.R. Hill, Magnetic metal-organic frameworks for efficient carbon dioxide capture and remote trigger release, Adv. Mater. 28(2016) 1839-1844. [37] M.M. Sadiq, H.Q. Li, A.J. Hill, P. Falcaro, M.R. Hill, K. Suzuki, Magnetic induction swing adsorption:An energy efficient route to porous adsorbent regeneration, Chem. Mater. 28(2016) 6219-6226. [38] J.-H. Lee, J.-t. Jang, J.-s. Choi, S.H. Moon, S.-h. Noh, J.-w. Kim, J.-G. Kim, I.-S. Kim, K.I. Park, J. Cheon, Exchange-coupled magnetic nanoparticles for efficient heat induction, Nat. Nanotechnol. 6(2011) 418-422. [39] X.N. Li, S.S. Peng, L.N. Feng, S.Q. Lu, L.J. Ma, M.B. Yue, One-pot synthesis of acidic and basic bifunctional catalysts to promote the conversion of ethanol to 1-butanol, Microporous Mesoporous Mater. 261(2018) 44-50. [40] S.S. Peng, M.H. Yang, W.K. Zhang, X.N. Li, C. Wang, M.B. Yue, Fabrication of ordered mesoporous solid super base with high thermal stability from mesoporous carbons, Microporous Mesoporous Mater. 242(2017) 18-24. [41] H. Zhang, Y.F. Fan, Y.H. Huan, M.B. Yue, Dry-gel synthesis of shaped transitionmetal-doped M-MFI (M=Ti, Fe, Cr, Ni) zeolites by using metal-occluded zeolite seed sol as a directing agent, Microporous Mesoporous Mater. 231(2016) 178-185. [42] S. Nagappan, C.S. Ha, Emerging trends in superhydrophobic surface based magnetic materials:Fabrications and their potential applications, J. Mater. Chem. A 3(2015) 3224-3251. [43] J. Park, K.J. An, Y.S. Hwang, J.G. Park, H.J. Noh, J.Y. Kim, J.H. Park, N.M. Hwang, T. Hyeon, Ultra-large-scale syntheses of monodisperse nanocrystals, Nat. Mater. 3(2004) 891-895. [44] S.H. Sun, H. Zeng, Size-controlled synthesis of magnetite nanoparticles, J. Am. Chem. Soc. 124(2002) 8204-8205. [45] N.R. Jana, Y.F. Chen, X.G. Peng, Size-and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach, Chem. Mater. 16(2004) 3931-3935. [46] S.A. Makhlouf, Magnetic properties of co3o4 nanoparticles, J. Magn. Magn. Mater. 246(2002) 184-190. [47] A.H. Lu, E.L. Salabas, F. Schuth, Magnetic nanoparticles:Synthesis, protection, functionalization, and application, Angew. Chem. Int. Ed. 46(2007) 1222-1244. [48] A. Bera, T. Babadagli, Status of electromagnetic heating for enhanced heavy oil/bitumen recovery and future prospects:A review, Appl. Energy 151(2015) 206-226. [49] H. Li, M.M. Sadiq, K. Suzuki, P. Falcaro, A.J. Hill, M.R. Hill, Magnetic induction framework synthesis:A general route to the controlled growth of metal-organic frameworks, Chem. Mater. 29(2017) 6186-6190. [50] J. Banhart, Manufacture, characterisation and application of cellular metals and metal foams, Prog. Mater. Sci. 46(2001) 559-632. [51] P. Jiang, J. Cizeron, J.F. Bertone, V.L. Colvin, Preparation of macroporous metal films from colloidal crystals, J. Am. Chem. Soc. 121(1999) 7957-7958. [52] B. Kong, J. Tang, Z.X. Wu, J. Wei, H. Wu, Y.C. Wang, G.F. Zheng, D.Y. Zhao, Ultralight mesoporous magnetic frameworks by interfacial assembly of prussian blue nanocubes, Angew. Chem. Int. Ed. 53(2014) 2888-2892. [53] B.C. Tappan, M.H. Huynh, M.A. Hiskey, D.E. Chavez, E.P. Luther, J.T. Mang, S.F. Son, Ultralow-density nanostructured metal foams:Combustion synthesis, morphology, and composition, J. Am. Chem. Soc. 128(2006) 6589-6594. [54] L. Wu, L.X. Li, B.C. Li, J.P. Zhang, A.Q. Wang, Magnetic, durable, and superhydrophobic polyurethane@Fe3O4@SiO2@fluoropolymer sponges for selective oil absorption and oil/water separation, ACS Appl. Mater. Interfaces 7(2015) 4936-4946. [55] Y.Q. Zhang, X. Bin Yang, Z.X. Wang, J. Long, L. Shao, Designing multifunctional 3d magnetic foam for effective insoluble oil separation and rapid selective dye removal for use in wastewater remediation, J. Mater. Chem. A 5(2017) 7316-7325. [56] R. Du, Q.L. Feng, H.Y. Ren, Q.C. Zhao, X. Gao, J. Zhang, Hybrid-dimensional magnetic microstructure based 3d substrates for remote controllable and ultrafast water remediation, J. Mater. Chem. A 4(2016) 938-943. [57] H.B. Zhao, Z.B. Fu, H.B. Chen, M.L. Zhong, C.Y. Wang, Excellent electromagnetic absorption capability of Ni/carbon based conductive and magnetic foams synthesized via a green one pot route, ACS Appl. Mater. Interfaces 8(2016) 1468-1477. [58] X.C. Gui, Z.P. Zeng, Z.Q. Lin, Q.M. Gan, R. Xiang, Y. Zhu, A.Y. Cao, Z.K. Tang, Magnetic and highly recyclable macroporous carbon nanotubes for spilled oil sorption and separation, ACS Appl. Mater. Interfaces 5(2013) 5845-5850. [59] D.F. Wang, G.L. Zhang, L.L. Zhou, M. Wang, D.Q. Cai, Z.Y. Wu, Synthesis of a multifunctional graphene oxide-based magnetic nanocomposite for efficient removal of Cr(VI), Langmuir 33(2017) 7007-7014. [60] N. Chen, Q.M. Pan, Versatile fabrication of ultralight magnetic foams and application for oil-water separation, ACS Nano 7(2013) 6875-6883. [61] K.Y.A. Lin, H.A. Chang, B.J. Chen, Multi-functional mof-derived magnetic carbon sponge, J. Mater. Chem. A 4(2016) 13611-13625. [62] T. Wang, P. Zhao, N. Lu, H. Chen, C. Zhang, X. Hou, Facile fabrication of Fe3O4/MIL-101(Cr) for effective removal of acid red 1 and orange g from aqueous solution, Chem. Eng. J. 295(2016) 403-413. [63] P. Tan, X.-Y. Xie, X.-Q. Liu, T. Pan, C. Gu, P.-F. Chen, J.-Y. Zhou, Y.C. Pan, L.-B. Sun, Fabrication of magnetically responsive HKUST-1/Fe3O4 composites by dry gel conversion for deep desulfurization and denitrogenation, J. Hazard. Mater. 321(2017) 344-352. [64] W. Zhao, J. Gu, L. Zhang, H. Chen, J. Shi, Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure, J. Am. Chem. Soc. 127(2005) 8916-8917. [65] L. Jia, S. Zhenkun, D. Yonghui, Z. Ying, L. Chunyuan, G. Xiaohui, X. Liqin, G. Yuan, L. Fuyou, Z. Dongyuan, Highly water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups, Angew. Chem. Int. Ed. 48(2009) 5875-5879. [66] Y. Deng, Y. Cai, Z. Sun, J. Liu, C. Liu, J. Wei, W. Li, C. Liu, Y. Wang, D. Zhao, Multifunctional mesoporous composite microspheres with well-designed nanostructure:A highly integrated catalyst system, J. Am. Chem. Soc. 132(2010) 8466-8473. [67] Y. Deng, D. Qi, C. Deng, X. Zhang, D. Zhao, Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins, J. Am. Chem. Soc. 130(2008) 28-29. [68] P. Tan, J.-X. Qin, X.-Q. Liu, X.-Q. Yin, L.-B. Sun, Fabrication of magnetically responsive core-shell adsorbents for thiophene capture:AgNO3-functionalized Fe3O4@mesoporous SiO2 microspheres, J. Mater. Chem. A 2(2014) 4698-4705. [69] Y. Xi, S. Yanlin, J. Lei, Applications of bio-inspired special wettable surfaces, Adv. Mater. 23(2011) 719-734. [70] Q. Zhu, Q. Pan, F. Liu, Facile removal and collection of oils from water surfaces through superhydrophobic and superoleophilic sponges, J. Phys. Chem. C 115(2011) 17464-17470. [71] S.-J. Choi, T.-H. Kwon, H. Im, D.-I. Moon, D.J. Baek, M.-L. Seol, J.P. Duarte, Y.-K. Choi, A polydimethylsiloxane (pdms) sponge for the selective absorption of oil from water, ACS Appl. Mater. Interfaces 3(2011) 4552-4556. [72] H. Gen, K. Kazuyoshi, F. Masashi, K. Hironori, N. Kazuki, Facile synthesis of marshmallow-like macroporous gels usable under harsh conditions for the separation of oil and water, Angew. Chem. Int. Ed. 125(2013) 2040-2043. [73] G. Ritu, K.G. U., Removal of organic compounds from water by using a gold nanoparticle-poly(dimethylsiloxane) nanocomposite foam, ChemSusChem 4(2011) 737-743. [74] Y. Chu, Q. Pan, Three-dimensionally macroporous Fe/C nanocomposites as highly selective oil-absorption materials, ACS Appl. Mater. Interfaces 4(2012) 2420-2425. [75] C.J. Vörösmarty, P.B. McIntyre, M.O. Gessner, D. Dudgeon, A. Prusevich, P. Green, S. Glidden, S.E. Bunn, C.A. Sullivan, C.R. Liermann, P.M. Davies, Global threats to human water security and river biodiversity, Nature 467(2010) 555-561. [76] P. Xu, G.M. Zeng, D.L. Huang, C.L. Feng, S. Hu, M.H. Zhao, C. Lai, Z. Wei, C. Huang, G.X. Xie, Z.F. Liu, Use of iron oxide nanomaterials in wastewater treatment:A review, Sci. Total Environ. 424(2012) 1-10. [77] N.N. Nassar, Rapid removal and recovery of Pb(Ⅱ) from wastewater by magnetic nanoadsorbents, J. Hazard. Mater. 184(2010) 538-546. [78] Z. Wu, Z. Gu, X. Wang, L. Evans, H. Guo, Effects of organic acids on adsorption of lead onto montmorillonite, goethite and humic acid, Environ. Pollut. 121(2003) 469-475. [79] Y. Al-Degs, M.A.M. Khraisheh, M.F. Tutunji, Sorption of lead ions on diatomite and manganese oxides modified diatomite, Water Res. 35(2001) 3724-3728. [80] J. Rivera-Utrilla, I. Bautista-Toledo, M.A. Ferro-García, C. Moreno-Castilla, Activated carbon surface modifications by adsorption of bacteria and their effect on aqueous lead adsorption, J. Chem. Technol. Biotechnol. 76(2001) 1209-1215. [81] C.L. Chen, J. Hu, D.D. Shao, J.X. Li, X.K. Wang, Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni(Ⅱ) and Sr(Ⅱ), J. Hazard. Mater. 164(2009) 923-928. [82] J.F. Liu, Z.S. Zhao, G.B. Jiang, Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water, Environ. Sci. Technol. 42(2008) 6949-6954. [83] J.H. Wang, S.R. Zheng, Y. Shao, J.L. Liu, Z.Y. Xu, D.Q. Zhu, Amino-functionalized Fe3O4@SiO2 core-shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal, J. Colloid Interface Sci. 349(2010) 293-299. [84] L.M. Zhou, Y.P. Wang, Z.R. Liu, Q.W. Huang, Characteristics of equilibrium, kinetics studies for adsorption of Hg(Ⅱ), Cu(Ⅱ), and Ni(Ⅱ) ions by thiourea-modified magnetic chitosan microspheres, J. Hazard. Mater. 161(2009) 995-1002. [85] H.B. Hu, Z.H. Wang, L. Pan, Synthesis of monodisperse Fe3O4@silica core-shell microspheres and their application for removal of heavy metal ions from water, J. Alloys Compd. 492(2010) 656-661. [86] M. Ozmen,K. Can,G. Arslan, A. Tor, Y. Cengeloglu, M. Ersoz, Adsorption of Cu(Ⅱ)from aqueous solution by using modified Fe3O4 magnetic nanoparticles, Desalination 254(2010) 162-169. [87] Y.-M. Hao, C. Man, Z.-B. Hu, Effective removal of Cu(Ⅱ) ions from aqueous solution by amino-functionalized magnetic nanoparticles, J. Hazard. Mater. 184(2010) 392-399. [88] J.L. Gong, B. Wang, G.M. Zeng, C.P. Yang, C.G. Niu, Q.Y. Niu, W.J. Zhou, Y. Liang, Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent, J. Hazard. Mater. 164(2009) 1517-1522. [89] I. Šafařík, Removal of organic polycyclic compounds from water solutions with a magnetic chitosan based sorbent bearing copper phthalocyanine dye, Water Res. 29(1995) 101-105. [90] I. Šafařík, K. Nymburská, M. Šafaříková, Adsorption of water-soluble organic dyes on magnetic charcoal, J. Chem. Technol. Biotechnol. 69(1997) 1-4. [91] I. Šafařík, M. Šafaříkova, Detection of low concentrations of malachite green and crystal violet in water, Water Res. 36(2002) 196-200. [92] R. Wu, J. Qu, Y. Chen, Magnetic powder MnO-Fe2O3 composite-a novel material for the removal of azo-dye from water, Water Res. 39(2005) 630-638. [93] V. Rocher, J.-M. Siaugue, V. Cabuil, A. Bee, Removal of organic dyes by magnetic alginate beads, Water Res. 42(2008) 1290-1298. [94] X.-L. Song, L.-B. Sun, G.-S. He, X.-Q. Liu, Isolated Cu(I) sites supported on betacyclodextrin:An efficient π-complexation adsorbent for thiophene capture, Chem. Commun. 47(2011) 650-652. [95] G.-S. He, L.-B. Sun, X.-L. Song, X.-Q. Liu, Y. Yin, Y.-C. Wang, Adjusting host properties to promote cuprous chloride dispersion and adsorptive desulfurization sites formation on SBA-15, Energy Fuel 25(2011) 3506-3513. [96] J.-H. Shan, L. Chen, L.-B. Sun, X.-Q. Liu, Adsorptive removal of thiophene by Cumodified mesoporous silica MCM-48 derived from direct synthesis, Energy Fuel 25(2011) 3093-3099. [97] W.-H. Tian, L.-B. Sun, X.-L. Song, X.-Q. Liu, Y. Yin, G.-S. He, Adsorptive desulfurization by copper species within confined space, Langmuir 26(2010) 17398-17404. [98] J. Xiong, L. Yang, Y.H. Chao, J.Y. Pang, M. Zhang, W.S. Zhu, H.M. Li, Boron nitride mesoporous nanowires with doped oxygen atoms for the remarkable adsorption desulfurization performance from fuels, ACS Sustain. Chem. Eng. 4(2016) 4457-4464. [99] J. Xiong, L. Yang, Y.H. Chao, J.Y. Pang, P.W. Wu, M. Zhang, W.S. Zhu, H.M. Li, A large number of low coordinated atoms in boron nitride for outstanding adsorptive desulfurization performance, Green Chem. 18(2016) 3040-3047. [100] J. Xiong, H.M. Li, L. Yang, J. Luo, Y.H. Chao, J.Y. Pang, W.S. Zhu, Metal-free boron nitride adsorbent for ultra-deep desulfurization, AIChE J. 63(2017) 3463-3469. [101] Y. Yin, W.-J. Jiang, X.-Q. Liu, Y.-H. Li, L.-B. Sun, Dispersion of copper species in a confined space and their application in thiophene capture, J. Mater. Chem. 22(2012) 18514-18521. [102] W.-J. Jiang, Y. Yin, X.-Q. Liu, X.-Q. Yin, Y.-Q. Shi, L.-B. Sun, Fabrication of supported cuprous sites at low temperatures:An efficient, controllable strategy using vaporinduced reduction, J. Am. Chem. Soc. 135(2013) 8137-8140. [103] Y. Yin, P. Tan, X.-Q. Liu, J. Zhu, L.-B. Sun, Constructing a confined space in silica nanopores:An ideal platform for the formation and dispersion of cuprous sites, J. Mater. Chem. A 2(2014) 3399-3406. [104] Y.-H. Li, P. Tan, X.-Q. Liu, D.-D. Zu, C.-L. Huang, L.-B. Sun, Facile fabrication of AgCl nanoparticles and their application in adsorptive desulfurization, J. Nanosci. Nanotechnol. 15(2015) 4373-4379. [105] J.-X. Qin, Z.-M. Wang, X.-Q. Liu, Y.-X. Li, L.-B. Sun, Low-temperature fabrication of Cu(I) sites in zeolites by using a vapor-induced reduction strategy, J. Mater. Chem. A 3(2015) 12247-12251. [106] J.-X. Qin, P. Tan, Y. Jiang, X.-Q. Liu, Q.-X. He, L.-B. Sun, Functionalization of metalorganic frameworks with cuprous sites using vapor-induced selective reduction:Efficient adsorbents for deep desulfurization, Green Chem. 18(2016) 3210-3215. [107] Y. Yin, J. Zhu, X.-Q. Liu, P. Tan, D.-M. Xue, Z.-M. Xing, L.-B. Sun, Simultaneous fabrication of bifunctional Cu(I)/Ce(IV) sites in silica nanopores using a guests-redox strategy, RSC Adv. 6(2016) 70446-70451. [108] Q.-X. He, Y. Jiang, P. Tan, X.-Q. Liu, J.-X. Qin, L.-B. Sun, Controlled construction of supported Cu+ sites and their stabilization in MIL-100(Fe):Efficient adsorbents for benzothiophene capture, ACS Appl. Mater. Interfaces 9(2017) 29445-29450. [109] J.M. Palomino, D.T. Tran, J.L. Hauser, H. Dong, S.R.J. Oliver, Mesoporous silica nanoparticles for high capacity adsorptive desulfurization, J. Mater. Chem. A 2(2014) 14890-14895. [110] J.L. Hauser, D.T. Tran, E.T. Conley, J.M. Saunders, K.C. Bustillo, S.R.J. Oliver, Plasma treatment of silver impregnated mesoporous aluminosilicate nanoparticles for adsorptive desulfurization, Chem. Mater. 28(2016) 474-479. [111] J.M. Palomino, D.T. Tran, A.R. Kareh, C.A. Miller, J.M.V. Gardner, H. Dong, S.R.J. Oliver, Zirconia-silica based mesoporous desulfurization adsorbents, J. Power Sources 278(2015) 141-148. [112] P. Tan, Y.-H. Li, X.-Q. Liu, Y. Jiang, L.-B. Sun, Core-shell AgCl@SiO2 nanoparticles:Ag (I)-based antibacterial materials with enhanced stability, ACS Sustain. Chem. Eng. 4(2016) 3268-3275. [113] P. Tan, Y. Jiang, X.-Q. Liu, D.-Y. Zhang, L.-B. Sun, Magnetically responsive core-shell Fe3O4@C adsorbents for efficient capture of aromatic sulfur and nitrogen compounds, ACS Sustain. Chem. Eng. 4(2016) 2223-2231. [114] J.-C. Geng, D.-M. Xue, X.-Q. Liu, Y.-Q. Shi, L.-B. Sun, N-doped porous carbons for CO2 capture:Rational choice of n-containing polymer with high phenyl density as precursor, AIChE J. 63(2017) 1648-1658. [115] J. Kou, L.-B. Sun, Fabrication of nitrogen-doped porous carbons for highly efficient CO2 capture:Rational choice of a polymer precursor, J. Mater. Chem. A 4(2016) 17299-17307. [116] S. Mane, Z.-Y. Gao, Y.-X. Li, X.-Q. Liu, L.-B. Sun, Rational fabrication of polyethylenimine-linked microbeads for selective CO2 capture, Ind. Eng. Chem. Res. 57(2018) 250-258. [117] S. Mane, Z.-Y. Gao, Y.-X. Li, D.-M. Xue, X.-Q. Liu, L.-B. Sun, Fabrication of microporous polymers for selective CO2 capture:The significant role of crosslinking and crosslinker length, J. Mater. Chem. A 5(2017) 23310-23318. [118] Y.-Q. Shi, J. Zhu, X.-Q. Liu, J.-C. Geng, L.-B. Sun, Molecular template-directed synthesis of microporous polymer networks for highly selective CO2 capture, ACS Appl. Mater. Interfaces 6(2014) 20340-20349. [119] L.-B. Sun, Y.-H. Kang, Y.-Q. Shi, Y. Jiang, X.-Q. Liu, Highly selective capture of the greenhouse gas CO2 in polymers, ACS Sustain. Chem. Eng. 3(2015) 3077-3085. [120] L.-B. Sun, A.-G. Li, X.-D. Liu, X.-Q. Liu, D. Feng, W. Lu, D. Yuan, H.-C. Zhou, Facile fabrication of cost-effective porous polymer networks for highly selective CO2 capture, J. Mater. Chem. A 3(2015) 3252-3256. |
[1] | Yingli Li, Zhishuncheng Li, Guangfei Qu, Rui Li, Shuaiyu Liang, Junhong Zhou, Wei Ji, Huiming Tang. Mechanism, behaviour and application of iron nitrate modified carbon nanotube composites for the adsorption of arsenic in aqueous solutions[J]. 中国化学工程学报, 2023, 60(8): 26-36. |
[2] | Pan Wang, Mengdei Zhou, Zhuangxin Wei, Lu Liu, Tao Cheng, Xiaohua Tian, Jianming Pan. Preparation of bowl-shaped polydopamine surface imprinted polymer composite adsorbent for specific separation of 2′-deoxyadenosine[J]. 中国化学工程学报, 2023, 60(8): 69-79. |
[3] | Jing Huang, Honghui Cai, Qian Zhao, Yunpeng Zhou, Haibo Liu, Jing Wang. Dual-functional pyrene implemented mesoporous silicon material used for the detection and adsorption of metal ions[J]. 中国化学工程学报, 2023, 60(8): 108-117. |
[4] | Wenwen Zhang, Zhigang Xue, Liyun Cui, Haoliang Gao, Di Zhao, Rongfei Zhou, Weihong Xing. Synthesis of an IMF zeolite membrane for the separation of xylene isomer[J]. 中国化学工程学报, 2023, 60(8): 205-211. |
[5] | Lingli Chen, Yueting Shi, Sijun Xu, Junle Xiong, Fang Gao, Shengtao Zhang, Hongru Li. Enhanced adsorption of target branched compounds including antibiotic norfloxacin frameworks on mild steel surface for efficient protection: An experimental and molecular modelling study[J]. 中国化学工程学报, 2023, 60(8): 212-227. |
[6] | Hammad Saulat, Jianhua Yang, Tao Yan, Waseem Raza, Wensen Song, Gaohong He. Tungsten incorporated mobil-type eleven zeolite membranes: Facile synthesis and tuneable wettability for highly efficient separation of oil/water mixtures[J]. 中国化学工程学报, 2023, 60(8): 242-252. |
[7] | Alexander Nti Kani, Evans Dovi, Aaron Albert Aryee, Runping Han, Zhaohui Li, Lingbo Qu. Mechanisms and reusability potentials of zirconium-polyaziridine-engineered tiger nut residue towards anionic pollutants[J]. 中国化学工程学报, 2023, 60(8): 275-292. |
[8] | Yuan Liu, Hanting Xiong, Jingwen Chen, Shixia Chen, Zhenyu Zhou, Zheling Zeng, Shuguang Deng, Jun Wang. One-step ethylene separation from ternary C2 hydrocarbon mixture with a robust zirconium metal-organic framework[J]. 中国化学工程学报, 2023, 59(7): 9-15. |
[9] | Hui Jiang, Zijian Zhao, Ning Yu, Yi Qin, Zhengwei Luo, Wenhua Geng, Jianliang Zhu. Synthesis, characterization, and performance comparison of boron using adsorbents based on N-methyl-D-glucosamine[J]. 中国化学工程学报, 2023, 59(7): 16-31. |
[10] | Borui Liu, Tao Zhang, Yi Zheng, Kailong Li, Hui Pan, Hao Ling. A dynamic control structure of liquid-only transfer stream distillation column[J]. 中国化学工程学报, 2023, 59(7): 135-145. |
[11] | Runze Chen, Yuran Chen, Xuemin Liang, Yapeng Kong, Yangyang Fan, Quan Liu, Zhenyu Yang, Feiying Tang, Johnny Muya Chabu, Maru Dessie Walle, Liqiang Wang. Oxidative exfoliation of spent cathode carbon: A two-in-one strategy for its decontamination and high-valued application[J]. 中国化学工程学报, 2023, 59(7): 262-269. |
[12] | Yafei Su, Xuke Zhang, Hui Li, Donglai Peng, Yatao Zhang. In-situ incorporation of halloysite nanotubes with 2D zeolitic imidazolate framework-L based membrane for dye/salt separation[J]. 中国化学工程学报, 2023, 58(6): 103-111. |
[13] | Shanghong Ma, Haitao Zhang, Jianbo Qu, Xiuzhong Zhu, Qingfei Hu, Jianyong Wang, Peng Ye, Futao Sai, Shiwei Chen. Preparation of waterborne polyurethane/β-cyclodextrin composite nanosponge by ion condensation method and its application in removing of dyes from wastewater[J]. 中国化学工程学报, 2023, 58(6): 124-136. |
[14] | Shuangtai Liu, Lei He, Qiuxiang Yao, Xi Li, Linyang Wang, Jing Wang, Ming Sun, Xiaoxun Ma. Separation and analysis of six fractions in low temperature coal tar by column chromatography[J]. 中国化学工程学报, 2023, 58(6): 256-265. |
[15] | Wende Tian, Jiawei Zhang, Zhe Cui, Haoran Zhang, Bin Liu. Microscopic mechanism study and process optimization of dimethyl carbonate production coupled biomass chemical looping gasification system[J]. 中国化学工程学报, 2023, 58(6): 291-305. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||