[1] M. Kondo, Y. Yu, T. Ikeda, How does the initial alignment of mesogens affect the photoinduced bending behavior of liquid-crystalline elastomers, Angew. Chem. 45(9) (2006) 1378-1382. [2] S. Taccola, F. Greco, E. Sinibaldi, A. Mondini, B. Mazzolai, V. Mattoli, Toward a new generation of electrically controllable hygromorphic soft actuators, Adv. Mater. 27(10) (2015) 1668-1675. [3] J. Gong, H. Lin, J.W. Dunlop, J. Yuan, Hierarchically arranged helical fiber actuators derived from commercial cloth, Adv. Mater. 29(16) (2017), 1605103. [4] P. Chen, Y. Xu, S. He, X. Sun, S. Pan, J. Deng, D. Chen, H. Peng, Hierarchically arranged helical fibre actuators driven by solvents and vapours, Nat. Nanotechnol. 10(12) (2015) 1077-1083. [5] J. Mu, C. Hou, H. Wang, Y. Li, Q. Zhang, M. Zhu, Origami-inspired active graphenebased paper for programmable instant self-folding walking devices, Sci. Adv. 1(10) (2015), e1500533. [6] Q. Zhao, J. Heyda, J. Dzubiella, K. Täuber, J.W. Dunlop, J. Yuan, Sensing solvents with ultrasensitive porous poly (ionic liquid) actuators, Adv. Mater. 27(18) (2015) 2913-2917. [7] A. Buguin, M.-H. Li, P. Silberzan, B. Ladoux, P. Keller, Micro-actuators:When artificial muscles made of nematic liquid crystal elastomers meet soft lithography, J. Am. Chem. Soc. 128(4) (2006) 1088-1089. [8] T. Mirfakhrai, J.D. Madden, R.H. Baughman, Polymer artificial muscles, Mater. Today 10(4) (2007) 30-38. [9] S.M. Mirvakili, I.W. Hunter, Multidirectional artificial muscles from nylon, Adv. Mater. 29(4) (2017), 1604734. [10] S.M. Mirvakili, I.W. Hunter, Artificial muscles:Mechanisms, applications, and challenges, Adv. Mater. 30(6) (2018), 1704407. [11] F. Ilievski, A.D. Mazzeo, R.F. Shepherd, X. Chen, G.M. Whitesides, Soft robotics for chemists, Angew. Chem. 123(8) (2011) 1930-1935. [12] D. Rus, M.T. Tolley, Design, fabrication and control of soft robots, Nature 521(7553) (2015) 467-475. [13] R.F. Shepherd, F. Ilievski, W. Choi, S.A. Morin, A.A. Stokes, A.D. Mazzeo, X. Chen, M. Wang, G.M. Whitesides, Multigait soft robot, Proc. Natl. Acad. Sci. 108(51) (2011) 20400-20403. [14] M.D. Manrique-Juárez, F. Mathieu, A. Laborde, S. Rat, V. Shalabaeva, P. Demont, O. Thomas, L. Salmon, T. Leichle, L. Nicu, Micromachining-compatible, facile fabrication of polymer nanocomposite spin crossover actuators, Adv. Funct. Mater. 28(29) (2018), 1801970. [15] H. Kim, H. Lee, I. Ha, J. Jung, P. Won, H. Cho, J. Yeo, S. Hong, S. Han, J. Kwon, Biomimetic color changing anisotropic soft actuators with integrated metal nanowire percolation network transparent heaters for soft robotics, Adv. Funct. Mater. 28(32) (2018) 1801847. [16] Y.C. Lai, J. Deng, R. Liu, Y.C. Hsiao, S.L. Zhang, W. Peng, H.M. Wu, X. Wang, Z.L. Wang, Actively perceiving and responsive soft robots enabled by self-powered, highly extensible, and highly sensitive triboelectric proximity- and pressure-sensing skins, Adv. Mater. 30(28) (2018), 1801114. [17] M. Ma, L. Guo, D.G. Anderson, R. Langer, Bio-inspired polymer composite actuator and generator driven by water gradients, Science 339(6116) (2013) 186-189. [18] L. Zhang, S. Chizhik, Y. Wen, P. Naumov, Directed motility of hygroresponsive biomimetic actuators, Adv. Funct. Mater. 26(7) (2016) 1040-1053. [19] J. Mu, C. Hou, B. Zhu, H. Wang, Y. Li, Q. Zhang, A multi-responsive water-driven actuator with instant and powerful performance for versatile applications, Sci. Rep. 5(1) (2015) 9503. [20] Z. Hu, X. Zhang, Y. Li, Synthesis and application of modulated polymer gels, Science 269(5223) (1995) 525-527. [21] F. Ilmain, T. Tanaka, E. Kokufuta, Volume transition in a gel driven by hydrogen bonding, Nature 349(6308) (1991) 400-401. [22] S. Juodkazis, N. Mukai, R. Wakaki, A. Yamaguchi, S. Matsuo, H. Misawa, Reversible phase transitions in polymer gels induced by radiation forces, Nature 408(6809) (2000) 178-181. [23] C. Yao, Z. Liu, C. Yang, W. Wang, X.J. Ju, R. Xie, L.Y. Chu, Poly (N-isopropylacrylamide)-clay nanocomposite hydrogels with responsive bending property as temperaturecontrolled manipulators, Adv. Funct. Mater. 25(20) (2015) 2980-2991. [24] L. Zhang, Z. Liu, L.Y. Liu, J.L. Pan, F. Luo, C. Yang, R. Xie, X.J. Ju, W. Wang, L.Y. Chu, Nanostructured thermo-responsive surfaces engineered via stable immobilization of smart nanogels with assistance of polydopamine, ACS Appl. Mater. Interfaces (2018) https://doi.org/10.1021/acsami.8b20395. [25] B.P. Lee, S. Konst, Novel hydrogel actuator inspired by reversible mussel adhesive protein chemistry, Adv. Mater. 26(21) (2014) 3415-3419. [26] K. Lee, S.A. Asher, Photonic crystal chemical sensors:pH and ionic strength, J. Am. Chem. Soc. 122(39) (2000) 9534-9537. [27] C. Ma, T. Li, Q. Zhao, X. Yang, J. Wu, Y. Luo, T. Xie, Supramolecular lego assembly towards three-dimensional multi-responsive hydrogels, Adv. Mater. 26(32) (2014) 5665-5669. [28] T.S. Shim, S.H. Kim, C.J. Heo, H.C. Jeon, S.M. Yang, Controlled origami folding of hydrogel bilayers with sustained reversibility for robust microcarriers, Angew. Chem. 51(6) (2012) 1420-1423. [29] Y. Tai, G. Lubineau, Z. Yang, Light-activated rapid-response polyvinylidene-fluoridebased flexible films, Adv. Mater. 28(23) (2016) 4665-4670. [30] Y. Hu, J. Liu, L. Chang, L. Yang, A. Xu, K. Qi, P. Lu, G. Wu, W. Chen, Y. Wu, Electrically and sunlight-driven actuator with versatile biomimetic motions based on rolled carbon nanotube bilayer composite, Adv. Funct. Mater. 27(44) (2017) 1703083. [31] Y. Hu, G. Wu, T. Lan, J. Zhao, Y. Liu, W. Chen, A graphene-based bimorph structure for design of high performance photoactuators, Adv. Mater. 27(47) (2015) 7867-7873. [32] K. Kwan, S. Li, N. Hau, W.-D. Li, S. Feng, A.H. Ngan, Light-stimulated actuators based on nickel hydroxide-oxyhydroxide, Sci. Robot. 3(18) (2018), eaat4051. [33] K. Kajiwara, S.B. Ross-Murphy, Synthetic gels on the move, Nature 355(6357) (1992) 208-209. [34] B. Xue, M. Qin, T. Wang, J. Wu, D. Luo, Q. Jiang, Y. Li, Y. Cao, W. Wang, Electrically controllable actuators based on supramolecular peptide hydrogels, Adv. Funct. Mater. 26(48) (2016) 9053-9062. [35] C. Keplinger, J.-Y. Sun, C.C. Foo, P. Rothemund, G.M. Whitesides, Z. Suo, Stretchable, transparent, ionic conductors, Science 341(6149) (2013) 984-987. [36] L. Kong, W. Chen, Carbon nanotube and graphene-based bioinspired electrochemical actuators, Adv. Mater. 26(7) (2014) 1025-1043. [37] G. Wu, Y. Hu, Y. Liu, J. Zhao, X. Chen, V. Whoehling, C. Plesse, G.T. Nguyen, F. Vidal, W. Chen, Graphitic carbon nitride nanosheet electrode-based high-performance ionic actuator, Nat. Commun. 6(2015) 7258. [38] M.R. Islam, X. Li, K. Smyth, M.J. Serpe, Polymer-based muscle expansion and contraction, Angew. Chem. 52(39) (2013) 10330-10333. [39] H. Cheng, J. Liu, Y. Zhao, C. Hu, Z. Zhang, N. Chen, L. Jiang, L. Qu, Graphene fibers with predetermined deformation as moisture-triggered actuators and robots, Angew. Chem. 52(40) (2013) 10482-10486. [40] D.D. Han, Y.L. Zhang, H.B. Jiang, H. Xia, J. Feng, Q.D. Chen, H.L. Xu, H.B. Sun, Moistureresponsive graphene paper prepared by self-controlled photoreduction, Adv. Mater. 27(2) (2015) 332-338. [41] S. Zeng, R. Li, S.G. Freire, V.M. Garbellotto, E.Y. Huang, A.T. Smith, C. Hu, W.R. Tait, Z. Bian, G. Zheng, Moisture-responsive wrinkling surfaces with tunable dynamics, Adv. Mater. 29(24) (2017), 1700828. [42] L. Wang, M.Y. Razzaq, T. Rudolph, M. Heuchel, U. Nöchel, U. Mansfeld, Y. Jiang, O. Gould, M. Behl, K. Kratz, Reprogrammable, magnetically controlled polymeric nanocomposite actuators, Mater. Horiz. (2018). https://doi.org/10.1039/c8mh00266e. [43] Q. Zhao, J.W. Dunlop, X. Qiu, F. Huang, Z. Zhang, J. Heyda, J. Dzubiella, M. Antonietti, J. Yuan, An instant multi-responsive porous polymer actuator driven by solvent molecule sorption, Nat. Commun. 5(2014) 4293. [44] S. Brown, M.R. Sim, M.J. Abramson, C.N. Gray, Concentrations of volatile organic compounds in indoor air-A review, Indoor Air 4(2) (1994) 123-134. [45] R. Atkinson, J. Arey, Atmospheric degradation of volatile organic compounds, Chem. Rev. 103(12) (2003) 4605-4638. [46] G. Wypych (Ed.), Handbook of Solvents, ChemTec Publishing, Toronto, 2001. [47] Z. Wang, J. Zhang, J. Xie, C. Li, Y. Li, S. Liang, Z. Tian, T. Wang, H. Zhang, H. Li, Bioinspired water-vapor-responsive organic/inorganic hybrid one-dimensional photonic crystals with tunable full-color stop band, Adv. Funct. Mater. 20(21) (2010) 3784-3790. [48] V. Dua, S.P. Surwade, S. Ammu, S.R. Agnihotra, S. Jain, K.E. Roberts, S. Park, R.S. Ruoff, S.K. Manohar, All-organic vapor sensor using inkjet-printed reduced graphene oxide, Angew. Chem. 49(12) (2010) 2154-2157. [49] P.-Y. Chen, M. Zhang, M. Liu, I.Y. Wong, R.H. Hurt, Ultrastretchable graphene-based molecular barriers for chemical protection, detection, and actuation, ACS Nano 12(1) (2017) 234-244. [50] M.K. Khan, W.Y. Hamad, M.J. MacLachlan, Tunable mesoporous bilayer photonic resins with chiral nematic structures and actuator properties, Adv. Mater. 26(15) (2014) 2323-2328. [51] C.S. Haines, M.D. Lima, N. Li, G.M. Spinks, J. Foroughi, J.D. Madden, S.H. Kim, S. Fang, M.J. de Andrade, F. Göktepe, Artificial muscles from fishing line and sewing thread, Science 343(6173) (2014) 868-872. [52] J. Deng, J. Li, P. Chen, X. Fang, X. Sun, Y. Jiang, W. Weng, B. Wang, H. Peng, Tunable photothermal actuators based on a pre-programmed aligned nanostructure, J. Am. Chem. Soc. 138(1) (2015) 225-230. [53] R.K. Gogoi, K. Raidongia, Strategic shuffling of clay layers to imbue them with responsiveness, Adv. Mater. 29(24) (2017), 1701164. [54] R.K. Gogoi, K. Saha, J. Deka, D. Brahma, K. Raidongia, Solvent-driven responsive bilayer membranes of clay and graphene oxide, J. Mater. Chem. A 5(7) (2017) 3523-3533. [55] K.J. Lee, J. Yoon, S. Rahmani, S. Hwang, S. Bhaskar, S. Mitragotri, J. Lahann, Spontaneous shape reconfigurations in multicompartmental microcylinders, Proc. Natl. Acad. Sci. 109(40) (2012) 16057-16062. [56] Y. Gu, N.S. Zacharia, Self-healing actuating adhesive based on polyelectrolyte multilayers, Adv. Funct. Mater. 25(24) (2015) 3785-3792. [57] H. Deng, Y. Dong, C. Zhang, Y. Xie, C. Zhang, J. Lin, An instant responsive polymer driven by anisotropy of crystal phases, Mater. Horiz. 5(1) (2018) 99-107. [58] H. Lin, J. Gong, H. Miao, R. Guterman, H. Song, Q. Zhao, J.W. Dunlop, J. Yuan, Flexible and actuating nanoporous poly (ionic liquid)-paper-based hybrid membranes, ACS Appl. Mater. Interfaces 9(17) (2017) 15148-15155. [59] L. Ionov, Soft microorigami:Self-folding polymer films, Soft Matter 7(15) (2011) 6786-6791. [60] Y. Tan, Z. Chu, Z. Jiang, T. Hu, G. Li, J. Song, Gyrification-inspired highly convoluted graphene oxide patterns for ultralarge deforming actuators, ACS Nano 11(7) (2017) 6843-6852. [61] C. Zhang, J.-W. Su, H. Deng, Y. Xie, Z. Yan, J. Lin, Reversible self-assembly of 3D architectures actuated by responsive polymers, ACS Appl. Mater. Interfaces 9(47) (2017) 41505-41511. [62] W.E. Lee, Y.J. Jin, L.S. Park, G. Kwak, Fluorescent actuator based on microporous conjugated polymer with intramolecular stack structure, Adv. Mater. 24(41) (2012) 5604-5609. [63] H. Deng, Y. Dong, J.-W. Su, C. Zhang, Y. Xie, C. Zhang, M.R. Maschmann, Y. Lin, J. Lin, Bioinspired programmable polymer gel controlled by swellable guest medium, ACS Appl. Mater. Interfaces 9(36) (2017) 30900-30908. [64] L. Zhang, P.e. Naumov, X. Du, Z. Hu, J. Wang, Vapomechanically responsive motion of microchannel-programmed actuators, Adv. Mater. 29(37) (2017), 1702231. [65] D.W. Van Krevelen, K. Te Nijenhuis, Properties of Polymers:Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions, Elsevier, Amsterdam, 2009. [66] C.M. Hansen, The universality of the solubility parameter, Ind. Eng. Chem. Prod. Rd. 8(1) (1969) 2-11. [67] J.E. Mark, Physical Properties of Polymers Handbook, Springer, London, 2007233-258. [68] W. Zhai, J. Yu, W. Ma, J. He, Cosolvent effect of water in supercritical carbon dioxide facilitating induced crystallization of polycarbonate, Polym. Eng. Sci. 47(9) (2007) 1338-1343. [69] R. Kambour, C. Gruner, E. Romagosa, Biphenol-A polycarbonate immersed in organic media. Swelling and response to stress, Macromolecules 7(2) (1974) 248-253. |