[1] C.A. Koh, Towards a fundamental understanding of natural gas hydrates, Chem. Soc. Rev. 31(2002) 157-167. [2] E.D.Sloan,C. Koh,Clathrate HydratesofNatural Gases,Thirdedition CRC Press, 2007. [3] C.A. Koh, R.P. Wisbey, X. Wu, R.E. Westacott, A.K. Soper, Water ordering around methane during hydrate formation, J. Chem. Phys. 113(2000) 6390-6397. [4] D.-Y. Koh, H. Kang, J. Jeon, Y.-H. Ahn, Y. Park, H. Kim, H. Lee, Tuning cage dimension in clathrate hydrates for hydrogen multiple occupancy, J. Phys. Chem. C 118(2014) 3324-3330. [5] A. Lenz, L. Ojamae, Structures of the I-, II- and H-methane clathrates and the ice-methane clathrate phase transition from quantum-chemical modeling with force-field thermal corrections, J. Phys. Chem. A 115(2011) 6169-6176. [6] R. Susilo, S. Alavi, J.A. Ripmeester, P. Englezos, Molecular dynamics study of structure H clathrate hydrates of methane and large guest molecules, J. Chem. Phys. 128(2008) 194505. [7] H. Komatsu, M. Ota, R.L. Smith Jr., H. Inomata, Review of CO2-CH4 clathrate hydrate replacement reaction laboratory studies-Properties and kinetics, J. Taiwan Inst. Chem. Eng. 44(2013) 517-537. [8] J. Zhao, K. Xu, Y. Song, W. Liu, W. Lam, Y. Liu, K. Xue, Y. Zhu, X. Yu, Q. Li, A review on research on replacement of CH4 in natural gas hydrates by use of CO2, Energies 5(2012) 399-419. [9] N. Goel, In situ methane hydrate dissociation with carbon dioxide sequestration:Current knowledge and issues, J. Pet. Sci. Eng. 51(2006) 169-184. [10] S. Lombardi, L.K. Altunina, S.E. Beaubien, Advances in the Geological Storage of Carbon Dioxide:International Approaches to Reduce Anthropogenic Greenhouse Gas Emissions, Springer, Netherlands, 2006. [11] L.P. Hauge, K.A. Birkedal, G. Ersland, A. Graue, Methane Production from Natural Gas Hydrates by CO2 Replacement-Review of Lab Experiments and Field Trial, SPE Bergen One Day Seminar, Society of Petroleum Engineers, 2014, https://doi.org/10.2118/169198-MS. [12] H.Lee, Y. Seo, Y.-T. Seo, I.L. Moudrakovski, J.A. Ripmeester, Recoveringmethane from solid methane hydrate with carbon dioxide, Angew. Chem. 115(2003) 5202-5205. [13] S. Lee, S. Park, Y. Lee, Y. Seo, Thermodynamic and 13C NMR spectroscopic verification of methane-carbon dioxide replacement in natural gas hydrates, Chem. Eng. J. 225(2013) 636-640. [14] D.Q. Robert, W. Hawtin, P. Mark Rodger, Gas hydrate nucleation and cage formation at a water/methane interface, Phys. Chem. Chem. Phys. 10(2008) 4853-4864. [15] M.R.Walsh,G.T.Beckham,C.A.Koh,E.D.Sloan,D.T.Wu,A.K.Sum,Methane hydrate nucleation rates from molecular dynamics simulations:Effects of aqueous methane concentration, interfacial curvature, and system size, J. Phys. Chem. C 115(2011) 21241-21248. [16] M.R. Walsh, J.D. Rainey, P.G. Lafond, D.-H. Park, G.T. Beckham, M.D. Jones, K.-H. Lee, C.A. Koh, E.D. Sloan, D.T. Wu, A.K. Sum, The cages, dynamics, and structuring of incipient methane clathrate hydrates, Phys. Chem. Chem. Phys. 13(2011) 19951. [17] C.T. Moon, P.C. Taylor, P.M. Rodger, Molecular dynamics study of gas hydrate formation, J. Am. Chem. Soc. 125(2003) 4706-4707. [18] J.K. Vatamanu, P.G. Kusalik, Molecular insights into the heterogeneous crystal growth of sI methane hydrate, J. Phys. Chem. B 110(2006) 15896-15904. [19] J.P.L. Lederhos, J.P., A. Sum, R.L. Christiansen, E.D. Sloan, Effective kinetic inhibitors for natural gas hydrates, Chem. Eng. Sci. 51(1995) 1221-1229. [20] J.D. Lee, P. Englezos, Unusual kinetic inhibitor effects on gas hydrate formation, Chem. Eng. Sci. 61(2006) 1368-1376. [21] A. Kumar, G. Bhattacharjee, B.D. Kulkarni, R. Kumar, Role of surfactants in promoting gas hydrate formation, Ind. Eng. Chem. Res. 54(49) (2015) 12217-12232. [22] M.R. Walsh, C.A. Koh, E.D. Sloan, A.K. Sum, D.T. Wu, Microsecond simulations of spontaneous methane hydrate nucleation and growth, Science 326(2009) 1095-1098. [23] S. Sarupria, P.G. Debenedetti, Homogeneous nucleation of methane hydrate in microsecond molecular dynamics simulations, J. Phys. Chem. Lett. 3(2012) 2942-2947. [24] H. Nada, Growth mechanism of a gas clathrate hydrate from a dilute aqueous gas solution:A molecular dynamics simulation of a three-phase system, J. Phys. Chem. B 110(2006) 16526-16534. [25] Y.-T. Tung, L.-J. Chen, Y.-P. Chen, S.-T. Lin, The growth of structure I methane hydrate from molecular dynamics simulations, J. Phys. Chem. B 114(2010) 10804-10813. [26] G. Tegze, T. Pusztai, G. Toth, L. Granasy, A. Svandal, T. Buanes, T. Kuznetsova, B. Kvamme, Multiscale approach to CO2 hydrate formation in aqueous solution:Phase field theory and molecular dynamics. Nucleation and growth, J. Chem. Phys. 124(2006) 234710. [27] Y.-T. Tung, L.-J. Chen, Y.-P. Chen, S.-T. Lin, Growth of structure I carbon dioxide hydrate from molecular dynamics simulations, J. Phys. Chem. C 115(2011) 7504-7515. [28] Z. He, P. Linga, J. Jiang, What are the key factors governing the nucleation of CO2 hydrate? Phys. Chem. Chem. Phys. 19(2017) 15657-15661. [29] S. Sarupria, P.G. Debenedetti, Molecular dynamics study of carbon dioxide hydrate dissociation, J. Phys. Chem. A 115(2011) 6102-6111. [30] P. Linga, N. Daraboina, J.A. Ripmeester, P. Englezos, Enhanced rate of gas hydrate formation in a fixed bed column filled with sand compared to a stirred vessel, Chem. Eng. Sci. 68(2012) 617-623. [31] I.L. Moudrakovski, G.E. McLaurin, C.I. Ratcliffe, J.A. Ripmeester, Methane and carbon dioxide hydrate formation in water droplets:Spatially resolved measurements from magnetic resonance microimaging, J. Phys. Chem. B 108(2004) 17591-17595. [32] B.K. Hess, C., D. Van der Spoel, E. Lindahl, GROMACS:Algorithms for highly efficient, load-balanced and scalable molecular simulation, J. Chem. Theory Comput. 4(2008) 435-447. [33] M.M. Conde, C. Vega, Determining the three-phase coexistence line in methane hydrates using computer simulations, J. Chem. Phys. 133(2010), 064507. [34] M.M. Conde, C. Vega, Note:A simple correlation to locate the three phase coexistence line in methane-hydrate simulations, J. Chem. Phys. 138(2013), 056101. [35] J.G.Y. Harris, K.H. Yung, Carbon dioxide's liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model, J. Phys. Chem. 99(1995) 12021-12024. [36] K. Watanabe, H. Okajima, T. Kato, H.O. Hamaguchi, Rotational dynamics of solvated carbon dioxide studied by infrared, Raman, and time-resolved infrared spectroscopies and a molecular dynamics simulation, J. Chem. Phys. 136(2012), 014508. [37] J.I.S. Marcus, G. Martin, Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes, J. Phys. Chem. 102(1998) 2569-2577. [38] B. Hess, H. Bekker, H.J.C. Berendsen, J.G.E.M. Fraaije, LINCS:A linear constraint solver for molecular simulations, J. Comput. Chem. 18(1997) 1463-1472. [39] T.Y. Darden, D., L. Pedersen, Particle mesh Ewald:An N.log(N) method for Ewald sums in large systems, J. Chem. Phys. 98(1993) 10089. [40] U.P. Essmann, L., M.L. Berkowitz, T. Darden, H. Lee, L.G. Pedersen, A smooth particle mesh Ewald method, J. Chem. Phys. 103(1995) 8577. [41] W.G. Hoover, Canonical dynamics:Equilibrium phase-space distributions, Phys. Rev. A 31(1985) 1695-1697. [42] S. Nose, A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys. 81(1984) 511-519. [43] S. Nose, M.L. Klein, Constant pressure molecular dynamics for molecular systems, Mol. Phys. 50(1983) 1055-1076. [44] M.R. Parrinello, A. Rahman, Polymorphic transitions in single crystals:A new molecular dynamics method, J. Appl. Phys. 52(1981) 7182-7190. [45] L.C. Jacobson, W. Hujo, V. Molinero, Thermodynamic stability and growth of guestfree clathrate hydrates:A low-density crystal phase of water, J. Phys. Chem. B 113(2009) 10298-10307. [46] M. Matsumoto, A. Baba, I. Ohmine, Topological building blocks of hydrogen bond network in water, J. Chem. Phys. 127(2007) 134504. [47] F. Jiménez-Ángeles, A. Firoozabadi, Nucleation of methane hydrates at moderate subcooling by molecular dynamics simulations, J. Phys. Chem. C 118(2014) 11310-11318. [48] C. Moon, R.W. Hawtin, P.M. Rodger, Nucleation and control of clathrate hydrates:Insights from simulation, Faraday Discuss. 136(2007) 367. [49] V.S. Baghel, R. Kumar, S. Roy, Heat transfer calculations for decomposition of structure I methane hydrates by molecular dynamics simulation, J. Phys. Chem. C 117(2013) 12172-12182. [50] S. Das, V.S. Baghel, S. Roy, R. Kumar, A molecular dynamics study of model SI clathrate hydrates:The effect of guest size and guest-water interaction on decomposition kinetics, Phys. Chem. Chem. Phys. 17(2015) 9509-9518. |