[1] F.X. Xiao, M. Pagliaro, Y.J. Xu, et al., Layer-by-layer assembly of versatile nanoarchitectures with diverse dimensionality:A new perspective for rational construction of multilayer assemblies, Chem. Soc. Rev. 45(2016) 3088-3121. [2] J.F. Quinn, A.P. Johnston, G.K. Such, et al., Next generation, sequentially assembled ultrathin films:Beyond electrostatics, Chem. Soc. Rev. 36(2007) 707-718. [3] M. Herzberg, A. Sweity, M. Brami, et al., Surface properties and reduced biofouling of graft-copolymers that possess oppositely charged groups, Biomacromolecules 12(2011) 1169-1177. [4] Y. Lv, H.C. Yang, H.Q. Liang, et al., Nanofiltration membranes via co-deposition of polydopamine/polyethylenimine followed by cross-linking, J. Membr. Sci. 476(2015) 50-58. [5] W.Z. Qiu, Y. Lv, Y. Du, et al., Composite nanofiltration membranes via the codeposition and cross-linking of catechol/polyethylenimine, RSC Adv. 6(2016) 34096-34102. [6] C. Liu, W.X. Fang, S.R., et al., Fabrication of layer-by-layer assembled FO hollow fiber membranes and their performances using low concentration draw solutions, Desalination 308(2013) 147-153. [7] H.Y. Shi, L.X. Xue, A.L. Gao, et al., Fouling-resistant and adhesion-resistant surface modification of dual layer PVDF hollow fiber membrane by dopamine and quaternary polyethyleneimine, J. Membr. Sci. 498(2016) 39-47. [8] W.N. Wang, Y.S. Xu, S. Backes, et al., Construction of compact polyelectrolyte multilayers inspired by marine mussel:Effects of salt concentration and pH as observed by QCM-D and AFM, Langmuir 32(2016) 3365-3374. [9] P.H.H. Duong, J. Zuo, T.S. Chung, Highly crosslinked layer-by-layer polyelectrolyte FO membranes:Understanding effects of salt concentration and deposition time on FO performance, J. Membr. Sci. 427(2013) 411-421. [10] A.W. Mohammad, Y.H. Teow, W.L. Ang, et al., Nanofiltration membranes review:Recent advances and future prospects, Desalination 356(2015) 226-254. [11] C. Bartels, M. Wilf, W. Casey, et al., New generation of low fouling nanofiltration membranes, Desalination 221(2008) 158-167. [12] K. Wang, A.A. Abdalla, M.A. Khaleel, et al., Mechanical properties of water desalination and wastewater treatment membranes, Desalination 401(2017) 190-205. [13] G. Han, T.S. Chung, M. Weber, et al., Low-pressure nanofiltration hollow fiber membranes for effective fractionation of dyes and inorganic salts in textile wastewater, Environ. Sci. Technol. 52(2018) 3676-3684. [14] W.J. Lau, A.F. Ismail, N. Misdan, et al., A recent progress in thin film composite membrane:A review, Desalination 287(2012) 190-199. [15] M. Paul, S.D. Jons, Chemistry and fabrication of polymeric nanofiltration membranes:A review, Polymer 103(2016) 417-456. [16] G.R. Xu, X.Y. Liu, J.M., et al., High flux nanofiltration membranes based on layer-bylayer assembly modified electrospun nanofibrous substrate, Appl. Surf. Sci. 434(2018) 573-581. [17] J.Y. Zhou, Z.P. Qin, Y.H. Lu, et al., MoS2/polyelectrolytes hybrid nanofiltration (NF) membranes with enhanced permselectivity, J. Taiwan Inst. Chem. Eng. 84(2018) 196-202. [18] S.B. Darling, Perspective:Interfacial materials at the interface of energy and water, J. Appl. Phys. 124(2018) 030901. [19] A. Quinn, E. Tjipto, A.M. Yu, et al., Polyelectrolyte blend multilayer films:Surface morphology, wettability, and protein adsorption characteristics, Langmuir 23(2007) 4944-4949. [20] H.Y. Zhen, T.T. Wang, R. Jia, et al., Preparation and performance of antibacterial layer-by-layer polyelectrolyte nanofiltration membranes based on metal-ligand coordination interactions, RSC Adv. 5(2015) 86784-86794. [21] M. Strawski, L.H. Granicka, M. Szklarczyk, Redox properties of polyelectrolyte multilayer modified electrodes:A significant effect of the interactions between the polyelectrolyte layers in the films, Electrochim. Acta 226(2017) 121-131. [22] Y.F. Huang, J.J. Sun, D.H. Wu, et al., Layer-by-layer self-assembled chitosan/PAA nanofiltration membranes, Sep. Purif. Technol. 207(2018) 142-150. [23] J. de Grooth, D.M. Reurink, J. Ploegmakers, et al., Charged micropollutant removal with hollow fiber nanofiltration membranes based on polycation/polyzwitterion/polyanion multilayers, ACS Appl. Mater. Interfaces 6(2014) 17009-17017. [24] L.D. Shen, C. Cheng, X.F. Yu, et al., Low pressure UV-cured CS-PEO-PTEGDMA/PAN thin film nanofibrous composite nanofiltration membranes for anionic dye separation, J. Mater. Chem. A 4(2016) 15575-15588. [25] R.J. Petersen, Composite reverse osmosis and nanofiltration membranes, J. Membr. Sci. 83(1993) 81-150. [26] R.R. Choudhury, J.M. Gohil, S. Mohanty, et al., Antifouling, fouling release and antimicrobial materials for surface modification of reverse osmosis and nanofiltration membranes, J. Mater. Chem. A 6(2018) 313-333. [27] M. Ulbricht, Advanced functional polymer membranes, Polymer 47(2006) 2217-2262. [28] C. Ursino, R. Castro-Munoz, E. Drioli, et al., Progress of nanocomposite membranes for water treatment, Membranes (Basel) 8(2018) 2-40. [29] N. Dizge, R. Epsztein, W. Cheng, et al., Biocatalytic and salt selective multilayer polyelectrolyte nanofiltration membrane, J. Membr. Sci. 549(2018) 357-365. [30] O. Tekinalp, S. Alsoy Altinkaya, Development of high flux nanofiltration membranes through single bilayer polyethyleneimine/alginate deposition, J. Colloid Interface Sci. 537(2019) 215-227. [31] Z. Lin, Q. Zhang, Y. Qu, et al., LBL assembled polyelectrolyte nanofiltration membranes with tunable surface charges and high permeation by employing a nanosheet sacrificial layer, J. Mater. Chem. A 5(2017) 14819-14827. [32] S. Karan, Z. Jiang, A.G. Livingston, Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation, Science 348(2015) 1347-1351. [33] J. Li, M.J. Wei, Y. Wang, Substrate matters:The influences of substrate layers on the performances of thin-film composite reverse osmosis membranes, Chin. J. Chem. Eng. 25(2017) 1676-1684. [34] S.C. Hess, A.X. Kohll, R.A. Raso, et al., Template-particle stabilized bicontinuous emulsion yielding controlled assembly of hierarchical high-flux filtration membranes, ACS Appl. Mater. Interfaces 7(2015) 611-617. [35] L. Guo, Y. Yang, F. Xu, et al., Design of gradient nanopores in phenolics for ultrafast water permeation, Chem. Sci. 10(2019) 2093-2100. [36] Q. Lan, Y. Yang, L. Guo, et al., Gradient nanoporous phenolics filled in macroporous substrates for highly permeable ultrafiltration, J. Membr. Sci. 576(2019) 123-130. [37] G.J. Zhang, H.H. Yan, S.L. Ji, et al., Self-assembly of polyelectrolyte multilayer pervaporation membranes by a dynamic layer-by-layer technique on a hydrolyzed polyacrylonitrile ultrafiltration membrane, J. Membr. Sci. 292(2007) 1-8. [38] L.Z. Zheng, L.Y. Xiong, Layer-by-layer assembly of PA-EDTA/PAH multilayer films and their potential-switchable electrochemistry, Colloids Surf. A Physicochem. Eng. Asp. 289(2006) 179-184. [39] R.R. Gonzales, M.J. Park, L. Tijing, et al., Modification of nanofiber support layer for thin film composite forward osmosis membranes via layer-by-layer polyelectrolyte deposition, Membranes (Basel) 8(2018) 1-15. [40] K. Hong, S.H. Kim, C. Yang, et al., Photopatternable poly(4-styrene sulfonic acid)-wrapped MWNT thin-film source/drain electrodes for use in organic field-effect transistors, ACS Appl. Mater. Interfaces 3(2011) 74-79. [41] S.L. Chen, J.B. Benziger, A.B. Bocarsly, et al., Photo-cross-linking of sulfonated styrene-ethylene-butylene copolymer membranes for fuel cells, Ind. Eng. Chem. Res. 44(2005) 7701-7705. [42] S. Wang, J. Cai, W. Ding, et al., Bio-inspired aquaporinz containing double-skinned forward osmosis membrane synthesized through layer-by-layer assembly, Membranes (Basel) 5(2015) 369-384. [43] Y. Tian, Q. He, C. Tao, et al., Fabrication of fluorescent nanotubes basel on layer-bylayer assembly via covalent bond, Langmuir 22(2006) 360-362. [44] M.R. Teixeira, M.J. Rosa, M. Nystrom, The role of membrane charge on nanofiltration performance, J. Membr. Sci. 265(2005) 160-166. [45] X. Shi, R. Wang, A. Xiao, et al., Layer-by-layer synthesis of covalent organic frameworks on porous substrates for fast molecular separations, ACS Appl. Nano. Mater. 11(2018) 6320-6326. [46] P. Shi, X.K. Hu, Y.T. Wang, et al., A PEG-tannic acid decorated microfiltration membrane for the fast removal of Rhodamine B from water, Sep. Purif. Technol. 207(2018) 443-450. |