[1] A. Lee, J.W. Elam, S.B. Darling, Membrane materials for water purification:design, development, and application, Environ. Sci. Water Res. Technol. 2(2016) 17-42. [2] N. Hilal, H. Al-Zoubi, N.A. Darwish, A.W. Mohamma, M. Abu Arabi, A comprehensive review of nanofiltration membranes, Desalination 170(2004) 281-308. [3] S.C. Yu, Z.W. Chen, Q.B. Cheng, Z.H. Lu, M.H. Liu, C.J. Gao, Application of thin-film composite hollow fiber membrane to submerged nanofiltration of anionic dye aqueous solutions, Sep. Purif. Technol. 88(2012) 121-129. [4] A.W. Mohammad, Y.H. Teow, W.L. Ang, Y.T. Chung, D.L. Oatley-Radcliffe, N. Hilal, Nanofiltration membranes review:Recent advances and future prospects, Desalination 356(2015) 226-254. [5] J. Radjenović, M. Petrović, F. Ventura, D. Barceló, Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment, Water Res. 42(2008) 3601-3610. [6] R. Zhang, S.L. Ji, N.X. Wang, L. Wang, G.J. Zhang, J.R. Li, Coordination-driven in situ self-assembly strategy for the preparation of metal-organic framework hybrid membranes, Angew. Chem. Int. Ed. 53(2014) 9775-9779. [7] L. Wang, S.L. Ji, N.X. Wang, R. Zhang, G.J. Zhang, J.R. Li, One-step self-assembly fabrication of amphiphilic hyperbranched polymer composite membrane from aqueous emulsion for dye desalination, J. Membr. Sci. 452(2014) 143-151. [8] P. Vandezande, L.E.M. Gevers, I.F.J. Vankelecom, Solvent resistant nanofiltration:separating on a molecular level, Chem. Soc. Rev. 37(2008) 365-405. [9] B. Van der Bruggen, M. Mänttäri, M. Nyström, Drawbacks of applying nanofiltration and how to avoid them:A review, Sep. Purif. Technol. 63(2008) 251-263. [10] I. Koyuncu, D. Topacik, M.R. Wiesner, Factors influencing flux decline during nanofiltration of solutions containing dyes and salts, Water Res. 38(2004) 432-440. [11] R.N. Zhang, Y.F. Li, Y.L. Su, X.T. Zhao, Y.N. Liu, X.C. Fan, T.Y. Ma, Z.Y. Jiang, Engineering amphiphilic nanofiltration membrane surfaces with a multi-defense mechanism for improved antifouling performances, J. Mater. Chem. A 4(2016) 7892-7902. [12] G.P. Wu, S.Y. Gan, L.Z. Cui, Y.Y. Xu, Preparation and characterization of PES/TiO2 composite membranes, Appl. Surf. Sci. 254(2008) 7080-7086. [13] Z.X. Gu, S.P. Cui, S.J. Liu, Q.F. An, Z.P. Qin, H.X. Guo, Superhydrophilic nanofiltration membrane with antifouling property through in-situ mineralization of Ce2(CO3)3 nanoparticles, J. Taiwan. Inst. Chem. E 88(2018) 70-77. [14] H.X. Guo, Y.W. Ma, P.Z. Sun, Z.P. Qin, Y.C. Liang, Self-cleaning and antifouling nanofiltration membranes-superhydrophilic multilayered polyelectrolyte/CSH composite films towards rejection of dyes, RSC Adv. 5(2015) 63429-63438. [15] H. Lee, S.N.M. Dellatore, W.M. Miller, P.B. Messersmith, Mussel-inspired surface chemistry for multifunctional coatings, Science 318(2007) 426-430. [16] H. Lee, J. Rho, P.B. Messersmith, Facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coatings, Adv. Mater. 21(2009) 431-434. [17] J.H. Li, X.X. Ni, D.B. Zhang, H. Zheng, J.B. Wang, Q.Q. Zhang, Engineering a self-driven PVDF/PDA hybrid membranes based on membrane micro-reactor effect to achieve super-hydrophilicity, excellent antifouling properties and hemocompatibility, Appl. Surf. Sci. 444(2018) 672-690. [18] H.C. Yang, K.J. Liao, H. Huang, Q.Y. Wu, L.S. Wan, Z.K. Xu, Mussel-inspired modification of a polymer membrane for ultra-high water permeability and oil-in-water emulsion separation, J. Mater. Chem. A 2(2014) 10225-10230. [19] Y. Lv, H.C. Yang, H.Q. Liang, L.S. Wan, Z.K. Xu, Novel nanofiltration membrane with ultrathin zirconia film as selective layer, J. Membr. Sci. 500(2016) 265-271. [20] R. Zhou, P.F. Ren, H.C. Yang, Z.K. Xu, Fabrication of antifouling membrane surface by poly (sulfobetaine methacrylate)/polydopamine co-deposition, J. Membr. Sci. 466(2014) 18-25. [21] M.F.G. Solomon, Y. Bhole, A.G. Livingston, High flux hydrophobic membranes for organic solvent nanofiltration (OSN)-Interfacial polymerization, surface modification and solvent activation, J. Membr. Sci. 434(2013) 193-203. [22] N.X. Wang, X.G. Shi, J. Gao, J.R. Li, L. Wang, H.X. Guo, G.J. Zhang, S.L. Ji, MCM-41@ZIF-8/PDMS hybrid membranes with micro-and nanoscaled hierarchical structure for alcohol permselective pervaporation, Sep. Purif. Technol. 153(2015) 146-155. [23] J. Lahann, S. Mitragotri, T.N. Tran, H. Kaido, J. Sundaram, A reversibly switching surface, Science 299(2003) 371-374. [24] S.H. Anastasiadis, H. Retsos, S. Pispas, N. Hadjichristidis, S. Neophytides, Smart polymer surfaces, Macromolecules 36(2003) 1994-1999. [25] S.T. Wang, Y.L. Song, L. Jiang, Photoresponsive surfaces with controllable wettability, J. Photoch. Photobio C 8(2007) 18-29. [26] B.Z. Lin, S.X. Zhou, Light-responsive nanoparticles with wettability changing from hydrophobicity to hydrophilicity and their application towards highly hydrophilic fluorocarbon coatings, Appl. Surf. Sci. 359(2015) 380-387. [27] W. Li, T. Guo, T. Meng, Y.S. Huang, X. Li, W.L. Yan, S. Wang, X.R. Li, Enhanced reversible wettability conversion of micro-nano hierarchical TiO2/SiO2 composite films under UV irradiation, Appl. Surf. Sci. 283(2013) 12-18. [28] A. Athanassiou, M.I. Lygeraki, D. Pisignano, K. Lakiotaki, M. Varda, E. Mele, C. Fotakis, R. Cingolani, S.H. Anastasiadis, Photocontrolled variations in the wetting capability of photochromic polymersenhanced by surface nanostructuring, Langmuir 22(2006) 2329-2333. [29] E. Velayi, R. Norouzbeigi, Annealing temperature dependent reversible wettability switching of micro/nano structured ZnO superhydrophobic surfaces, Appl. Surf. Sci. 441(2018) 156-164. [30] A.M. Jonas, K. Glinel, R. Oren, B. Nysten, W.T.S. Huck, Thermo-responsive polymer brushes with tunable collapse temperatures in the physiological range, Macromolecules 40(2007) 4403-4405. [31] S. Minko, M. Müller, M. Motornov, M. Nitschke, K. Grundke, M. Stamm, Two-level structured self-adaptive surfaces with reversibly tunable properties, J. Am. Chem. Soc. 125(2003) 3896-3900. [32] J. Draper, I. Luzinov, S. Minko, I. Tokarev, M. Stamm, Mixed polymer brushes by sequential polymer addition:anchoring layer effect, Langmuir 20(2004) 4064-4075. [33] S.G. Boyes, W.J. Brittain, X. Weng, S.Z.D. Cheng, Synthesis, characterization, and properties of ABA type triblock copolymer brushes of styrene and methyl acrylate prepared by atom transfer radical polymerization, Macromolecules 35(2002) 4960-4967. [34] G.K. Jennings, E.L. Brantley, Physicochemical properties of surface-initiated polymer films in the modification and processing of materials, Adv. Mater. 16(2004) 1983-1994. [35] L. Robinson, J. Isaksson, N. Isaksson, N.D. Robinson, M. Berggren, Electrochemical control of surface wettability of poly(3-alkylthiophenes), Surf. Sci. 600(2006) 148-152. [36] I.S. Chio, Y.S. Chi, Surface reactions on demand:electrochemical control of SAMbased reactions, Angew. Chem. Int. Ed. 45(2006) 4894-4897. [37] S. Davari, M. Omidkhah, M. Abdollahi, Improved antifouling ability of thin film composite polyamide membrane modified by a pH-sensitive imidazole-based zwitterionic polyelectrolyte, J. Membr. Sci. 564(2018) 788-799. [38] Z.W. Lei, G.Z. Zhang, Y.H. Deng, C.Y. Wang, Surface modification of melamine sponges for pH-responsive oil absorption and desorption, Appl. Surf. Sci. 416(2017) 798-804. [39] C. Vogel, J.M. Haack, Preparation of ion-exchange materials and membranes, Desalination 342(2014) 156-174. [40] H.S. Lim, S.G. Lee, D.H. Lee, D.Y. Lee, S. Lee, K. Cho, Superhydrophobic to superhydrophilic wetting transition with programmable ion-pairing interaction, Adv. Mater. 20(2008) 4438-4441. [41] L.M. Wang, B. Peng, Z.H. Su, Tunable wettability and rewritable wettability gradient from superhydrophilicity to superhydrophobicity, Langmuir 26(2010) 12203-12208. [42] Y. Li, Z.P. Qin, H.X. Guo, H.X. Yang, G.J. Zhang, S.L. Ji, T.Y. Zeng, Low-temperature synthesis of anatase TiO2 nanoparticles with tunable surface charges for enhancing photocatalytic activity, PLoS One 9(2014), e114638.. [43] Z.P. Qin, X.Y. Ren, L.L. Shan, H.X. Guo, C.L. Geng, G.J. Zhang, S.L. Ji, Y.C. Liang, Nacrelike-structured multilayered polyelectrolyte/calcium carbonate nanocomposite membrane via Ca-incorporated layer-by-layer-assembly and CO2-induced biomineralization, J. Membr. Sci. 498(2016) 180-191. [44] H.X. Guo, Y.W. Ma, Z.P. Qin, Z.X. Gu, S.P. Cui, G.J. Zhang, One-step transformation from hierarchical-structured superhydrophilic NF membrane into superhydrophobic OSN membrane with improved antifouling effect, ACS Appl. Mater. Inter. 8(2016) 23379-23388. [45] H.C. Song, J.H. Shao, Y.L. He, J. Hou, W.B. Chao, Natural organic matter removal and flux decline with charged ultrafiltration and nanofiltration membranes, J. Membr. Sci. 376(2011) 179-187. [46] J.K. Pi, H.C. Yang, L.S. Wan, J. Wu, Z.K. Xu, Polypropylene microfiltration membranes modified with TiO2 nanoparticles for surface wettability and antifouling property, J. Membr. Sci. 500(2015) 8-15. [47] K.S. Liu, M.Y. Cao, A. Fujishima, L. Jiang, Bio-inspired titanium dioxide materials with special wettability and their applications, Chem. Rev. 114(2014) 10044-10094. [48] R.X. Zhang, L. Braeken, P. Luis, X.L. Wang, B.V. Bruggen, Novel binding procedure of TiO2 nanoparticles to thin film composite membranes via self-polymerized polydopamine, J. Membr. Sci. 437(2013) 179-188. [49] S. Zhao, Z. Wang, A loose nano-filtration membrane prepared by coating HPAN UF membrane with modified PEI for dye reuse and desalination, J. Membr. Sci. 524(2017) 214-224. [50] A. Dobraka, B. Verrechta, H.V. Dungen, A. Buekenhoudt, I.F.J. Vankelecom, B.V. Bruggen, Solvent flux behavior and rejection characteristics of hydrophilic and hydrophobic mesoporous and microporous TiO2 and ZrO2 membranes, J. Membr. Sci. 346(2010) 344-352. |