[1] S.S. Acharyya, S. Ghosh, R. Bal, Nanoclusters of Cu(ii) supported on nanocrystalline W(Ⅵ) oxide:a potential catalyst for single-step conversion of cyclohexane to adipic acid, Green Chem. 17(2015) 3490-3499. [2] P. Bhanja, S. Chatterjee, A.K. Patra, A. Bhaumik, A new microporous oxyfluorinated titanium(IV) phosphate as an efficient heterogeneous catalyst for the selective oxidation of cyclohexanone, J. Colloid Interface Sci. 511(2018) 92-100. [3] Y. Matsumoto, M. Kuriyama, K. Yamamoto, K. Nishida, O. Onomura, Metal-free synthesis of adipic acid via organocatalytic direct oxidation of cyclohexane under ambient temperature and pressure, Org. Process. Res. Dev. 22(2018) 1312-1317. [4] L. Mouheb, L. Dermeche, T. Mazari, S. Benadji, N. Essayem, C. Rabia, Clean adipic acid synthesis from liquid-phase oxidation of cyclohexanone and cyclohexanol using (NH4)(x)A(y)PMo(12)O(40) (A:Sb, Sn, Bi) mixed heteropolysalts and hydrogen peroxide in free solvent, Catal. Lett. 148(2018) 612-620. [5] A. Tahar, S. Benadji, T. Mazari, L. Dermeche, C. Marchal-Roch, C. Rabia, Preparation, characterization and reactivity of Keggin type phosphomolybdates, H3-2x Ni (x) PMo12O40 and (NH4)(3-2x) Ni (x) PMo12O40, for adipic acid synthesis, Catal. Lett. 145(2015) 569-575. [6] P. Bhanja, K. Ghosh, S.S. Islam, A.K. Patra, S.M. Islam, A. Bhaumik, New hybrid Iron phosphonate material as an efficient catalyst for the synthesis of adipic acid in air and water, ACS Sustain. Chem. Eng. 4(2016) 7147-7157. [7] F. Cavani, L. Ferroni, A. Frattini, C. Lucarelli, A. Mazzini, K. Raabova, S. Alini, P. Accorinti, P. Babini, Evidence for the presence of alternative mechanisms in the oxidation of cyclohexanone to adipic acid with oxygen, catalysed by Keggin polyoxometalates, Appl. Catal. A 391(2011) 118-124. [8] S.A. Chavan, D. Srinivas, P. Ratnasamy, Oxidation of cyclohexane, cyclohexanone, and cyclohexanol to adipic acid by a non-HNO3 route over Co/Mn cluster complexes, J. Catal. 212(2002) 39-45. [9] A.K. Patra, A. Dutta, A. Bhaumik, Mesoporous core-shell fenton nanocatalyst:A mild, operationally simple approach to the synthesis of adipic acid, Chem. Eur. J. 19(2013) 12388-12395. [10] M. Vafaeezadeh, M. Mahmoodi Hashemi, Simple and green oxidation of cyclohexene to adipic acid with an efficient and durable silica-functionalized ammonium tungstate catalyst, Catal. Commun. 43(2014) 169-172. [11] M. Shang, T. Noël, Q. Wang, Y. Su, K. Miyabayashi, V. Hessel, S. Hasebe, 2-and 3-stage temperature ramping for the direct synthesis of adipic acid in micro-flow packed-bed reactors, Chem. Eng. J. 260(2015) 454-462. [12] J. Alcañiz-Monge, G. Trautwein, A. Garcia-Garcia, Influence of peroxometallic intermediaries present on polyoxometalates nanoparticles surface on the adipic acid synthesis, J. Mol. Catal. A Chem. 394(2014) 211-216. [13] I.Q. Peñate, G. Lesage, P. Cognet, M. Poux, Clean synthesis of adipic acid from cyclohexene in microemulsions with stearyl dimethyl benzyl ammonium chloride as surfactant:From the laboratory to bench scale, Chem. Eng. J. 200-202(2012) 357-364. [14] P. Blach, Z. Böstrom, S. Franceschi-Messant, A. Lattes, E. Perez, I. Rico-Lattes, Recyclable process for sustainable adipic acid production in microemulsions, Tetrahedron 66(2010) 7124-7128. [15] L. Wang, Z. Chen, M. Huang, Z. Yang, P. Sun, K. Wang, W. Zhang, A green route to cyclohexanone:Selective oxidation of cyclohexanol promoted by non-precious catalyst of h-WO3 nanorods, Catal. Lett. 146(2016) 1283-1290. [16] M. Rezaei, A.N. Chermahini, H.A. Dabbagh, Green and selective oxidation of cyclohexane over vanadium pyrophosphate supported on mesoporous KIT-6, Chem. Eng. J. 314(2017) 515-525. [17] N. Imanaka, T. Masui, K. Jyoko, Selective liquid phase oxidation of cyclohexane over Pt/CeO2-ZrO2-SnO2/SiO2 catalysts with molecular oxygen, J. Adv. Ceram 4(2015) 111-117. [18] S.D. Nale, P.V. Rathod, V.H. Jadhav, Manganese incorporated on glucose as an efficient catalyst for the synthesis of adipic acid using molecular O-2 in aqueous medium, Appl. Catal., A 546(2017) 122-125. [19] J. Feliciano Miranda, P.M. Cuesta Zapata, E.E. Gonzo, M.L. Parentis, L.E. Davies, N.A. Bonini, Amorphous Cr/SiO2 materials hydrothermally treated:liquid phase cyclohexanol oxidation, Catal. Lett. 148(2018) 2082-2094. [20] A. Alshammari, A. Koeckritz, V.N. Kalevaru, A. Bagabas, A. Martin, Potential of supported gold bimetallic catalysts for green synthesis of adipic acid from cyclohexane, Top. Catal. 58(2015) 1069-1076. [21] Y. Liu, M.Q. Zhu, X.Z. Chen, U. Jameel, J.G. Lu, Coating of Au-Al2O3 catalyst in the wall of microcapillary and its application in cyclohexane oxidation, J. Flow Chem. 6(2016) 110-116. [22] Oxidation of cyclohexanol to epsilon-caprolactone with aqueous hydrogen peroxide on H3PW12O40 and Cs2.5H0.5PW12O40, DOI:10.1016/j.catcom.2008.03.006 [23] M. Conte, X. Liu, D.M. Murphy, S.H. Taylor, K. Whiston, G.J. Hutchings, Insights into the reaction mechanism of cyclohexane oxidation catalysed by molybdenum blue nanorings, Catal. Lett. 146(2016) 126-135. [24] S. Benadji, T. Mazari, L. Dermeche, N. Salhi, E. Cadot, C. Rabia, Clean alternative for adipic acid synthesis via liquid-phase oxidation of cyclohexanone and cyclohexanol over H3-2xCoxPMo12O40 catalysts with hydrogen peroxide, Catal. Lett. 143(2013) 749-755. [25] D. Amitouche, M. Haouas, T. Mazari, S. Mouanni, R. Canioni, C. Rabia, E. Cadot, C. Marchal-Roch, The primary stages of polyoxomolybdate catalyzed cyclohexanone oxidation by hydrogen peroxide as investigated by in situ NMR. Substrate activation and evolution of the working catalyst, Appl. Catal., A 561(2018) 104-116. [26] M. Moudjahed, L. Dermeche, S. Benadji, T. Mazari, C. Rabia, Dawson-type polyoxometalates as green catalysts for adipic acid synthesis, J. Mol. Catal. A Chem. 414(2016) 72-77. [27] J. Luo, Y. Huang, B. Ding, P. Wang, X. Geng, J. Zhang, Y. Wei, Single-atom Mn active site in a triol-stabilized beta-Anderson manganohexamolybdate for enhanced catalytic activity towards adipic acid production, Catalysts 8(2018) 121-133. [28] P. Wolf, C. Hammond, S. Conrad, I. Hermans, Post-synthetic preparation of Sn-, Tiand Zr-beta:a facile route to water tolerant, highly active Lewis acidic zeolites, Dalton Trans. 43(2014) 4514-4519. [29] J. Jin, X. Ye, Y. Li, Y. Wang, L. Li, J. Gu, W. Zhao, J. Shi, Synthesis of mesoporous beta and Sn-beta zeolites and their catalytic performances, Dalton Trans. 43(2014) 8196-8204. [30] A.B. Laursen, K.T. Højholt, L.F. Lundegaard, S.B. Simonsen, S. Helveg, F. Schüth, M. Paul, J.-D. Grunwaldt, S. Kegnæs, C.H. Christensen, K. Egeblad, Substrate size-selective catalysis with zeolite-encapsulated gold nanoparticles, Angew. Chem. 122(2010) 3582-3585. [31] C. Hammond, N. Dimitratos, R.L. Jenkins, J.A. Lopez-Sanchez, S.A. Kondrat, M. Hasbi ab Rahim, M.M. Forde, A. Thetford, S.H. Taylor, H. Hagen, E.E. Stangland, J.H. Kang, J.M. Moulijn, D.J. Willock, G.J. Hutchings, Elucidation and evolution of the active component within Cu/Fe/ZSM-5 for catalytic methane oxidation:from synthesis to catalysis, ACS Catal. 3(2013) 689-699. [32] N.M.F. Carvalho, A. Horn Jr., O.A.C. Antunes, Cyclohexane oxidation catalyzed by mononuclear iron(III) complexes, Appl. Catal. A 305(2006) 140-145. [33] X. Yang, Y. Li, H. Yu, X. Gui, H. Wang, H. Huang, F. Peng, Enhanced catalytic activity of carbon nanotubes for the oxidation of cyclohexane by filling with Fe, Ni, and FeNi alloy nanowires, Aust. J. Chem. 69(2016) 689-695. [34] Y. Xie, F. Zhang, P. Liu, F. Hao, H.A. Luo, Catalytic oxidation of cyclohexane with dioxygen over boehmite supported trans-A(2)B(2) type metalloporphyrins catalyst, J. Mol. Catal. A Chem. 386(2014) 95-100. [35] B.B. Dong, K. Zhang, C.X. Li, C.Y. Yuan, X.C. Zheng, Synthesis and characterization of W-SBA-15 mesoporous material, Adv. Mater. Res. 485(2012) 31-34. [36] X. Fang, X. Li, Z. Hao, J. He, D. Chen, Preparation of complex oxide WO3-SnO2 for catalytic synthesis of adipic acid, Chem. World 54(2013) 328-331. [37] P.R. Makgwane, S.S. Ray, Efficient room temperature oxidation of cyclohexane over highly active hetero-mixed WO3/V2O5 oxide catalyst, Catal. Commun. 54(2014) 118-123. [38] Z. Hao, H. Yang, J. He, D. Chen, Preparation of WO3/SiO2 catalyst for green oxidation of cyclohexanone to adipic acid with H2O2, Applied Chemical Industry 42(2013) 245-247,252. [39] X. Li, Y. Tian, J. Li, D. Chen, M. Li, Hydrothermal preparation of tungsten-based catalyst Sn-doped for catalytic synthesis of adipic acid, Applied Chemical Industry 43(2014) 1050-1053. [40] F. Zhang, H. Yang, J. He, D. Chen, Preparation of lanthanum modified solid catalyst SnO2-WO3/La2O3 and its catalytic performance for synthesis of adipic acid, Chinese Rare Earths 34(2013) 46-49. [41] H. Li, Y. She, H. Fu, M. Cao, J. Wang, T. Wang, Synergistic effect of co-reactant promotes one-step oxidation of cyclohexane into adipic acid catalyzed by manganese porphyrins, Can. J. Chem. 93(2015) 696-701. [42] X. Gao, Y. Zhou, J. Gu, L. Li, Y. Li, Facile synthesis of hierarchical manganesecontaining TS-1 and its application on the oxidation of cyclohexanone with molecular oxygen, Microporous Mesoporous Mater. 275(2019) 263-269. [43] Y. Deng, B. Chen, J. Wu, X. Yuan, H. Luo, Effect of calcination atmosphere on the catalytic performance of MnAPO-36 molecular sieve, Petrochem. Technol. 40(2011) 247-250. [44] S. Chatterjee, P. Bhanja, L. Paul, M. Ali, A. Bhaumik, MnAPO-5 as an efficient heterogeneous catalyst for selective liquid phase partial oxidation reactions, Dalton Trans. 47(2018) 791-798. [45] G. Zou, W. Zhong, L. Mao, Q. Xu, J. Xiao, D. Yin, Z. Xiao, S.R. Kirk, T. Shu, A non-nitric acid method of adipic acid synthesis:organic solvent-and promoter-free oxidation of cyclohexanone with oxygen over hollow-structured Mn/TS-1 catalysts, Green Chem. 17(2015) 1884-1892. [46] Y. Han, S. Li, R. Ding, W. Xu, G. Zhang, Baeyer-Villiger oxidation of cyclohexanone catalyzed by cordierite honeycomb washcoated with Mg-Sn-W composite oxides, Chin. J. Chem. Eng. 27(2019) 564-574. [47] L. Chen, Y. Zhou, Z. Gui, H. Cheng, Z. Qi, Au nanoparticles confined in hybrid shells of silica nanospheres for solvent-free aerobic cyclohexane oxidation, J. Mater. Sci. 52(2017) 7186-7198. [48] R. Liu, H. Huang, H. Li, Y. Liu, J. Zhong, Y. Li, S. Zhang, Z. Kang, Metal nanoparticle/carbon quantum dot composite as a photocatalyst for high-efficiency cyclohexane oxidation, ACS Catal. 4(2014) 328-336. [49] A. Alshammari, A. Koeckritz, V.N. Kalevaru, A. Bagabas, A. Martin, Significant formation of adipic acid by direct oxidation of cyclohexane using supported nano-gold catalysts, Chemcatchem 4(2012) 1330-1336. [50] B.P.C. Hereijgers, B.M. Weckhuysen, Aerobic oxidation of cyclohexane by gold-based catalysts:New mechanistic insight by thorough product analysis, J. Catal. 270(2010) 16-25. [51] A.M. Gill, C.S. Hinde, R.K. Leary, M.E. Potter, A. Jouve, P.P. Wells, P.A. Midgley, J.M. Thomas, R. Raja, Design of highly selective platinum nanoparticle catalysts for the aerobic oxidation of KA-oil using continuous-flow chemistry, Chemsuschem 9(2016) 423-427. [52] X. Jiang, Y. Shan, L. Wu, M. Lu, M. Li, Highly efficient catalytic system for cyclohexanone synthesis by cyclohexane oxidation with oxygen, Acta Petrolei Sinica. Petroleum Processing Section 29(2013) 984-990. [53] C.A.O. Xiaohua, Preparation,characterization of Csx H6-x P2 W18 O62 nH2O and its activity on catalytic synthesis of adipic acid, J. Funct. Mater. 46(2015) 6124-6128. [54] X. Cao, C. Xu, D. Zhou, Y. Lei, Preparation, characterization of Cs_xH_(6-x)P_2W_(18) O_(62)·nH_2O/diatomite and its catalytic application for adipic acid synthesis, Acta Petrolei Sinica. Petroleum Processing Section 31(2015) 1430-1437. [55] T. Stoylkova, C. Chanev, Aerial oxidation of alcohols over CuAl-, CoAl-, NiAl-, ZnAllayered double hydroxides and their mixed oxides, React. Kinet. Mech. Catal. 117(2016) 47-58. [56] Y. Qu, C. Fang, M. Duan, J. Wang, Investigations on the reaction kinetics and the catalytic effect of Cu(II) and V(V) in the oxidation of cyclohexanol by nitric acid, React. Kinet. Mech. Catal. 112(2014) 209-226. [57] F. Yang, S. Zhou, S. Gao, X. Liu, S. Long, Y. Kong, In situ embedding of ultra-fine nickel oxide nanoparticles in HMS with enhanced catalytic activities of styrene epoxidation, Microporous Mesoporous Mater. 238(2017) 69-77. [58] S. Rahman, C. Santra, R. Kumar, J. Bahadur, A. Sultana, R. Schweins, D. Sen, S. Maity, S. Mazumdar, B. Chowdhury, Highly active Ga promoted co-HMS-X catalyst towards styrene epoxidation reaction using molecular O-2, Appl. Catal. A 482(2014) 61-68. [59] T.A. Zepeda, A. Infantes-Molina, J.N. Diaz de Leon, R. Obeso-Estrella, S. Fuentes, G. Alonso-Nunez, B. Pawelec, Synthesis and characterization of Ga-modified Ti-HMS oxide materials with varying Ga content, J. Mol. Catal. A Chem. 397(2015) 26-35. [60] X. Li, L. Zhang, H. Gao, Q. Chen, Preparation, characterization, and catalytic performance of Ta-HMS mesoporous molecular sieve, Russ. J. Phys. Chem. A 90(2016) 1545-1551. [61] Y.Y. Liu, K. Murata, M. Inaba, Synthesis and catalytic activity of niobium-containing hexagonal mesoporous silica, Chem. Lett. 32(2003) 992-993. [62] P.T. Tanev, T.J. Pinnavaia, A neutral templating route to mesoporous molecular sieves, Science (New York, N.Y.) 267(1995) 865-867. [63] X. Jin, M. Zhao, C. Zeng, W. Yan, Z. Song, P.S. Thapa, B. Subramaniam, R.V. Chaudhari, Oxidation of glycerol to dicarboxylic acids using cobalt catalysts, ACS Catal. 6(2016) 4576-4583. [64] C. Xia, L. Ju, Y. Zhao, H. Xu, B. Zhu, F. Gao, M. Lin, Z. Dai, X. Zou, X. Shu, Heterogeneous oxidation of cyclohexanone catalyzed by TS-1:Combined experimental and DFT studies, Chin. J. Catal. 36(2015) 845-854. [65] M.S. Kumar, J. Pérez-Ramírez, M.N. Debbagh, B. Smarsly, U. Bentrup, A. Brückner, Evidence of the vital role of the pore network on various catalytic conversions of N2O over Fe-silicalite and Fe-SBA-15 with the same iron constitution, Appl. Catal. B 62(2006) 244-254. [66] A. Boudjemaa, K. Bachari, M. Trari, Photo-induced hydrogen on iron hexagonal mesoporous silica (Fe-HMS) photo-catalyst, Int. J. Energy Res. 37(2013) 171-178. [67] H. Perez, P. Navarro, J. Jose Delgado, M. Montes, Mn-SBA15 catalysts prepared by impregnation:Influence of the manganese precursor, Appl. Catal. A 400(2011) 238-248. [68] J. Pisk, D. Agustin, R. Poli, Organic salts and merrifield resin supported PM12O40(3-) (M=Mo or W) as catalysts for adipic acid synthesis, Molecules 24(2019). [69] Y. Deng, L. Ma, Y. Mao, Biological production of adipic acid from renewable substrates:Current and future methods, Biochem. Eng. J. 105(2016) 16-26. [70] Keggin-Type Heteropoly Salts as Bifunctional Catalysts in Aerobic Baeyer-Villiger Oxidation, DOI:10.3390/ma11071208 |