[1] R.J. Lim, M. Xie, M.A. Sk, J.-M. Lee, A. Fisher, X. Wang, K.H. Lim, A review on the electrochemical reduction of CO2 in fuel cells, metal electrodes and molecular catalysts, Catal. Today 233(2014) 169-180. [2] S. Solomon, J.S. Daniel, T.J. Sanford, D.M. Murphy, G.K. Plattner, R. Knutti, P. Friedlingstein, Persistence of climate changes due to a range of greenhouse gases, Proc. Natl. Acad. Sci. U. S. A. 107(2010) 18354. [3] S. Solomon, G.K. Plattner, R. Knutti, P. Friedlingstein, Irreversible climate change due to carbon dioxide emissions, Proc. Natl. Acad. Sci. U. S. A. 106(2009) 1704-1709. [4] T. Zhang, H. Zhong, Y. Qiu, X. Li, H. Zhang, Zn electrode with a layer of nanoparticles for selective electroreduction of CO2 to formate in aqueous solutions, J. Mater. Chem. A 4(2016) 16670-16676. [5] P. Usubharatana, D. Mcmartin, A. Amornvadee Veawab, P. Tontiwachwuthikul, Photocatalytic process for CO2 emission reduction from industrial flue gas streams, Ind. Eng. Chem. Res. 45(2006) 2558-2568. [6] M. Packer, Algal capture of carbon dioxide; biomass generation as a tool for greenhouse gas mitigation with reference to New Zealand energy strategy and policy, Energy Policy 37(2009) 3428-3437. [7] Y. Zhang, L. Liu, L. Shi, T. Yang, D. Niu, S. Hu, X. Zhang, Enhancing CO2 electroreduction on nanoporous silver electrode in the presence of halides, Electrochim. Acta 313(2019) 561-569. [8] J. Zeng, K. Bejtka, W. Ju, M. Castellino, A. Chiodoni, A. Sacco, M.A. Farkhondehfal, S. Hernandez, D. Rentsch, C. Battaglia, C.F. Pirri, Advanced cu-Sn foam for selectively converting CO2 to CO in aqueous solution, Applied Catalysis B-Environmental 236(2018) 475-482. [9] C. Genovese, C. Ampelli, S. Perathoner, G. Centi, Electrocatalytic conversion of CO2 on carbon nanotube-based electrodes for producing solar fuels, J. Catal. 308(2013) 237-249. [10] A. Murata, Y. Hori, Product selectivity affected by cationic species in electrochemical reduction of CO2 and CO at a cu electrode, Bull. Chem. Soc. Jpn. 64(1991) 123-127. [11] Y. Hori, A. Murata, R. Takahashi, ChemInform abstract:formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution, Cheminform 21(1990) 2309-2326. [12] S. Kaneco, K. Iiba, N.H. Hiei, K. Ohta, T. Mizuno, T. Suzuki, Electrochemical reduction of carbon dioxide to ethylene with high faradaic efficiency at a Cu electrode in CsOH/methanol, Electrochim. Acta 44(1999) 4701-4706. [13] S. Kaneco, K. Iiba, H. Katsumata, T. Suzuki, K. Ohta, Effect of sodium cation on the electrochemical reduction of CO2 at a copper electrode in methanol, J. Solid State Electrochem. 11(2007) 490-495. [14] S. Kaneco, K. Iiba, H. Katsumata, T. Suzuki, K. Ohta, Electrochemical reduction of high pressure CO2 at a Cu electrode in cold methanol, Electrochim. Acta 51(2006) 4880-4885. [15] I. Bhugun, A. Doris Lexa, J.M. Savéant, Catalysis of the electrochemical reduction of carbon dioxide by iron(0) porphyrins. Synergistic effect of Lewis acid cations, J. Phys. Chem. C 249(1996) 19981-19985. [16] M.R. Thorson, K.I. Siil, P.J.A. Kenis, Effect of cations on the electrochemical conversion of CO2 to CO, J. Electrochem. Soc. 160(2013) F69-F74. [17] M.R. Singh, Y. Kwon, Y. Lum, J.W. Ager, A.T. Bell, Hydrolysis of electrolyte cations enhances the electrochemical reduction of CO2 over Ag and Cu, J. Am. Chem. Soc. 138(2016) 13006-13012. [18] S. Kaneco, K. Iiba, K. Ohta, T. Mizuno, Electrochemical reduction of carbon dioxide on copper in methanol with various potassium supporting electrolytes at low temperature, J. Solid State Electrochem. 3(1999) 424-428. [19] S. Kaneco, K. Iiba, M. Yabuuchi, N. Nishio, H. Ohnishi, H. Katsumata, T. Suzuki, K. Ohta, High efficiency electrochemical CO2-to-methane conversion method using methanol with lithium supporting electrolytes, Ind. Eng. Chem. Res. 41(2002) 5165-5170. [20] S. Kaneco, H. Katsumata, T. Suzuki, K. Ohta, Electrochemical reduction of CO2 to methane at the Cu electrode in methanol with sodium supporting salts and its comparison with other alkaline salts, Energ Fuel 20(2006) 409-414. [21] S. Kaneco, K. Iiba, K. Ohta, T. Mizuno, Reduction of carbon dioxide to petrochemical intermediates, Energy Sources 22(2000) 127-135. [22] K. Ogura, J.R.F. Iii, A.V. Cugini, E.S. Smotkin, M.D. Salazar-Villalpando, CO2 attraction by specifically adsorbed anions and subsequent accelerated electrochemical reduction, Electrochim. Acta 56(2011) 381-386. [23] Q. Li, M. Li, S. Zhang, X. Liu, X. Zhu, Q. Ge, H. Wang, Tuning Sn-Cu catalysis for electrochemical reduction of CO2 on rartially reduced oxides SnOx-CuOx-modified cu electrodes, Catalysts 9(2019) 1-13. [24] S. Ringe, E.L. Clark, J. Resasco, A. Walton, B. Seger, A.T. Bell, K. Chan, Understanding cation effects in electrochemical CO2 reduction, Energy Environ. Sci. 12(2019) 3001-3014. [25] J. Resasco, Y. Lum, E. Clark, J.Z. Zeledon, A.T. Bell, Effects of anion identity and concentration on electrochemical reduction of CO2, Chemelectrochem 5(2018) 1064-1072. [26] M. Koenig, J. Vaes, E. Klemm, D. Pant, Solvents and supporting electrolytes in the electrocatalytic reduction of CO2, Iscience 19(2019) 135-160. [27] K.G. Schulz, U. Riebesell, B. Rost, S. Thoms, R.E. Zeebe, Determination of the rate constants for the carbon dioxide to bicarbonate inter-conversion in pH-buffered seawater systems, Mar. Chem. 100(2006) 53-65. [28] M.R. Singh, Y. Kwon, Y. Lum, J.W. Ager 3rd, A.T. Bell, Hydrolysis of electrolyte cations enhances the electrochemical reduction of CO2 over Ag and cu, J. Am. Chem. Soc. 138(2016) 13006-13012. [29] S. Hong, S. Lee, S. Kim, J.K. Lee, J. Lee, Anion dependent CO/H2 production ratio from CO2 reduction on Au electro-catalyst, Catal. Today 295(2017) 82-88. |