[1] M. Fabbri, S. Jiang, V.K.A. Dhir, Comparative study of cooling of high power density electronics using sprays and microjets, J. Heat Transfer 127(2005) 38. [2] G.L. Morini, Single-phase convective heat transfer in microchannels:A review of experimental results, Int. J. Therm. Sci. 43(2004) 631-651. [3] N.M.R. Jeffers, J. Punch, E.J. Walsh, M. McLean, Heat transfer from novel target surface structures to a normally impinging, submerged and confined water jet, J. Therm. Sci. Eng. Appl. 031001(2009) 1. [4] Z. Dai, Z. Guo, D.F. Fletcher, B.S. Haynes, Taylor flow heat transfer in microchannels-Unification of liquid-liquid and gas-liquid results, Chem. Eng. Sci. 138(2015) 140-152. [5] T. Bandara, N.-T. Nguyen, G. Rosengarten, Slug flow heat transfer in microchannels:a numerical study, Chem. Eng. Sci. 126(2015) 283-295. [6] P.A. Walsh, E.J. Walsh, Y.S. Muzychka, Heat transfer model for gas-liquid slug flows under constant flux, Int. J. Heat Mass Transf. 53(2010) 3193-3201. [7] S.S.Y. Leung, R. Gupta, D.F. Fletcher, B.S. Haynes, Effect of flow characteristics on Taylor flow heat transfer, Ind. Eng. Chem. Res. 51(2012) 2010-2020. [8] S.S.Y. Leung, Y. Liu, D.F. Fletcher, B.S. Haynes, Heat transfer in well-characterised Taylor flow, Chem. Eng. Sci. 65(2010) 6379-6388. [9] D. Lakehal, G. Larrignon, C. Narayanan, Computational heat transfer and two-phase flow topology in miniature tubes, Microfluid. Nanofluid. 4(2008) 261-271. [10] C. Horvath, B.A. Solomon, J.M. Engasser, Measurement of radial transport in slug flow using enzyme tubes, Ind. Eng. Chem. Fundam. 12(1973) 431-439. [11] Q. He, Y. Hasegawa, N. Kasagi, Heat transfer modeling of gas-liquid slug flow without phase change in a microtube, Int. J. Heat Fluid Flow 31(2010) 126-136. [12] R. Gupta, D.F. Fletcher, B.S. Haynes, CFD modeling of flow and heat transfer in the Taylor flow regime, Chem. Eng. Sci. 65(2010) 2094-2107. [13] K. Fukagata, N. Kasagi, P. Ua-arayaporn, T. Himeno, Numerical simulation of gasliquid two-phase flow and convective heat transfer in a micro tube, Int. J. Heat Fluid Flow 28(2007) 72-82. [14] A.R. Betz, D. Attinger, Can segmented flow enhance heat transfer in microchannel heat sinks? Int. J. Heat Mass Transf. 53(2010) 3683-3691. [15] A.N. Asadolahi, R. Gupta, D.F. Fletcher, B.S. Haynes, CFD approaches for the simulation of hydrodynamics and heat transfer in Taylor flow, Chem. Eng. Sci. 66(2011) 5575-5584. [16] A.N. Asadolahi, R. Gupta, S.S.Y. Leung, D.F. Fletcher, B.S. Haynes, Validation of a CFD model of Taylor flow hydrodynamics and heat transfer, Chem. Eng. Sci. 69(2012) 541-552. [17] K.a. Triplett, S.M. Ghiaasiaan, S.I. Abdel-Khalik, A. LeMouel, B.N. McCord, Gas-liquid two-phase flow in microchannels:Part II:Void fraction and pressure drop, Int. J. Multiphase Flow 25(1999) 395-410. [18] K.a. Triplett, S.M. Ghiaasiaan, S.I. Abdel-Khalik, D.L. Sadowski, Gas-liquid two-phase flow in microchannels Part I:Two-phase flow patterns, Int. J. Multiph. Flow 25(1999) 377-394. [19] C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys. 39(1981) 201-225. [20] A. Mehdizadeh, S.A. Sherif, W.E. Lear, Numerical simulation of thermofluid characteristics of two-phase slug flow in microchannels, Int. J. Heat Mass Transf. 54(2011) 3457-3465. [21] T. Bauer, M. Schubert, R. Lange, R.Sh Abiev, Intensification of heterogeneous catalytic gas-fluid interactions in reactors with a multichannel monolithic catalyst, Russ. J. Appl. Chem. 79(7) (2006) 1057-1066. [22] R. Abiev, I.V. Lavretsov, Intensification of mass transfer from liquid to capillary wall by Taylor vortices in minichannels, bubble velocity and pressure drop, Chem. Eng. Sci. 74(2012) 59-68. [23] R. Abiev, Bubbles velocity, Taylor circulation rate and mass transfer model for slug flow in milli and microchannels, Chem. Eng. J. 227(2013) 66-79. [24] R. Gupta, D.F. Fletcher, B.S. Haynes, On the CFD modelling of Taylor flow in microchannels, Chem. Eng. Sci. 64(2009) 2941-2950. [25] R. Gupta, S.S.Y. Leung, R. Manica, D.F. Fletcher, B.S. Haynes, Hydrodynamics of liquid-liquid Taylor flow in microchannels, Chem. Eng. Sci. 92(2013) 180-189. [26] M.N. Kashid, et al., Internal circulation within the liquid slugs of a liquid-liquid slugflow capillary microreactor, Ind. Eng. Chem. Res. 44(2005) 5003-5010. [27] T. Taha, Z.F. Cui, CFD modelling of slug flow in vertical tubes, Chem. Eng. Sci. 61(2006) 676-687. [28] E.T. White, R.H. Beardmore, The velocity of rise of single cylindrical air bubbles through liquids contained in vertical tubes, Chem. Eng. Sci. 17(1962) 351-361. [29] V. Talimi, Y.S. Muzychka, S. Kocabiyik, Slug flow heat transfer in square microchannels, Int. J. Heat Mass Transf. 62(2013) 752-760. [30] J. Zhang, D.F. Fletcher, W. Li, Heat transfer and pressure drop characteristics of gas-liquid Taylor flow in mini ducts of square and rectangular cross-sections, Int. J. Heat Mass Transf. 103(2016) 45-56. [31] R.S. Abiev, Effect of contact-angle hysteresis on the pressure drop under slug flow conditions in minichannels and microchannels, Theor. Found. Chem. Eng. 49(4) (2015) 414-421. [32] Y. Chen, R. Kulenovic, R. Mertz, Numerical study on the formation of Taylor bubbles in capillary tubes, Int. J. Therm. Sci. 48(2009) 234-242. [33] S.D. Svetlov, R.S. Abiev, Formation mechanisms and lengths of the bubbles and liquid slugs in a coaxial-spherical micro mixer in Taylor flow regime, Chem. Eng. J. 354(2018) 269-284. [34] Q. Lou, M. Yang, H. Xu, Numerical investigations of gas-liquid two-phase flows in microchannels, Proc IMechE Part C J Mech Eng Sci. 232(3) (2018) 466-476. [35] S.V.B. Vivekanand, V.R.K. Raju, Effect of wall contact angle and carrier phase velocity on the flow physics of gas-liquid Taylor flows inside microchannels, Chem. Pap. 75(5) (2019) 1173-1188, https://doi.org/10.1007/s11696-018-0668-3(2018). [36] R. Abiev, Modern state and perspectives of micro technique application in chemical industry, Russ. J. Gen. Chem. 82(12) (2012) 2019-2024. [37] R. Gupta, D.F. Fletcher, B.S. Haynes, Taylor flow in microchannels:A review of experimental and computational work, J Comput Multiph Flows 2(2010) 1-32. [38] V. Talimi, Y.S. Muzychka, S. Kocabiyik, A review on numerical studies of slug flow hydrodynamics and heat transfer in microtubes and microchannels, Int. J. Multiphase Flow 39(2012) 88-104. [39] M.M. Farhangi, M. Passandideh-Fard, H. Moin, Numerical study of bubble rise and interaction in a viscous liquid, Int. J. Comut. Fluid Dyn. 24(1-2) (2010) 13-28. [40] A. Asthana, I. Zinovik, C. Weinmueller, D. Poulikakos, Significant Nusselt number increase in microchannels with a segmented flow of two immiscible liquids:An experimental study, Int. J. Heat Mass Transf. 54(2011) 1456-1464. [41] D.B. Tuckerman, R.F.W. Pease, High-performance heat sinking for VLSI, IEEE Electron Device Lett. 2(1981) 126-129. [42] M. Mac Giolla Eain, V. Egan, J. Punch, Local Nusselt number enhancements in liquid-liquid Taylor flows, Int. J. Heat Mass Transf. 80(2015) 85-97. [43] P. Urbant, A. Leshansky, Y. Halupovich, On the forced convective heat transport in a droplet-laden flow in microchannels, Microfluid. Nanofluid. 4(2008) 533-542. [44] Z. Che, T.N. Wong, N.T. Nguyen, Heat transfer enhancement by recirculating flow within liquid plugs in microchannels, Int. J. Heat Mass Transf. 55(2012) 1947-1956. [45] Z. Che, T.N. Wong, N.T. Nguyen, An analytical model for plug flow in microcapillaries with circular cross section, Int. J. Heat Fluid Flow 32(2011) 1005-1013. [46] Z. Che, T.N. Wong, N.T. Nguyen, Heat transfer in plug flow in cylindrical microcapillaries with constant surface heat flux, Int. J. Therm. Sci. 64(2013) 204-212. [47] M. Fischer, D. Juric, D. Poulikakos, Large convective heat transfer enhancement in microchannels with a train of coflowing immiscible or colloidal droplets, J. Heat Transfer 132(2010), 112402. [48] T. Bandara, N.-T. Nguyen, G. Rosengarten, Slug flow heat transfer without phase change in microchannels:A review, Chem. Eng. Sci. 126(2015) 283-295. [49] J. Mantle, M. Kazmierczak, B. Hiawy, The effect of temperature modulation on natural convection in a horizontal layer heated from below:High-Rayleigh-number experiments, J. Heat Transf. 116(3) (1994) 614-620. [50] Z. Nikkhah, A. Karimipour, M.R. Safaei, P. Forghani-Tehrani, M. Goodarzi, M. Dahari, S. Wongwises, Forced convective heat transfer of water/functionalized multi-walled carbon nanotube nanofluids in a microchannel with oscillating heat flux and slip boundary condition, Int. Comm. in Heat and Mass Transfer 68(2015) 69-77. [51] K.D. Cole, Steady-periodic heating in parallel-plate microchannel flow with participating walls, Int. J. Heat Mass Transf. 53(5-6) (2010) 870-878. [52] ANSYS FLUENT 12.0 Theory Guide, Access date:13th March 2019. [53] J.U. Brackbill, D.B. Kothe, C. Zemach, A continuum method for modeling surface tension, J. Comput. Phys. 100(1992) 335-354. [54] S.V.B. Vivekanand, V.R.K. Raju, Simulation of evaporation heat transfer in a rectangular microchannel, Procedia Engineering 127(2015). [55] F.P. Bretherton, The motion of long bubbles in tubes, J. Fluid Mech. 10(1961) 166-188. [56] R.K. Shah, Laminar flow friction and forced convection heat transfer in ducts of arbitrary geometry, Int. J. Heat Mass Transf. 18(1975) 849-862. [57] P. Aussillous, D. Quere, Quick deposition of a fluid on the wall of a tube, Phys. Fluids 12(10) (2000) 2367-2371. [58] Y. Han, N. Shikazono, Measurement of the liquid film thickness in micro tube slug flow, Int. J. Heat Fluid Flow 30(5) (2009) 842-853. [59] M. Mac Giolla Eain, V. Egan, J. Punch, Film thickness measurements in liquid-liquid slug flow regimes, Int. J. Heat Fluid Flow 44(2013) 515-523. [60] H.L. Goldsmith, S.G. Mason, The flow of suspensions through tubes-II single large bubbles, J. Colloid Interface Sci. 18(1963) 237-261. [61] W.L. Olbricht, D.M. Kung, The deformation and breakup of liquid drops in low Reynolds number flow through a capillary, Phys. Fluids 4(1992) 1347-1354. |