中国化学工程学报 ›› 2020, Vol. 28 ›› Issue (2): 502-517.DOI: 10.1016/j.cjche.2019.05.012
• Energy, Resources and Environmental Technology • 上一篇 下一篇
Inn Shi Tan1, Man Kee Lam2,3, Henry Chee Yew Foo1, Steven Lim4, Keat Teong Lee5
收稿日期:
2019-01-09
修回日期:
2019-05-27
出版日期:
2020-02-28
发布日期:
2020-05-21
通讯作者:
Inn Shi Tan, Man Kee Lam
基金资助:
Inn Shi Tan1, Man Kee Lam2,3, Henry Chee Yew Foo1, Steven Lim4, Keat Teong Lee5
Received:
2019-01-09
Revised:
2019-05-27
Online:
2020-02-28
Published:
2020-05-21
Contact:
Inn Shi Tan, Man Kee Lam
Supported by:
摘要: In recent years, utilization of renewable sources for biofuel production is gaining popularity due to growing greenhouse gas (GHG) emissions which causes global warming. There has been a great effort in exploring alternative feedstock for bioethanol production. In this context, the production of third-generation bioethanol from macroalgae has emerged as an alternative feedstock to food crop-based starch and lignocellulosic biomass. This is mainly due to the fast growth rate of macroalgae, no competition with agricultural land, high carbohydrate content and relatively simple processing steps compared to lignocellulosic biomass. This review paper provides an insight of recent innovative approaches for macroalgae bioethanol production, including conventional and advanced hydrolysis process to produce fermentable sugar, various fermentation technologies, economic analysis and life cycle assessment. With the current technology maturity, efficient utilization of macroalgae as sustainable source for bioethanol and other value-added chemicals production could be achieved in the near future.
Inn Shi Tan, Man Kee Lam, Henry Chee Yew Foo, Steven Lim, Keat Teong Lee. Advances of macroalgae biomass for the third generation of bioethanol production[J]. 中国化学工程学报, 2020, 28(2): 502-517.
Inn Shi Tan, Man Kee Lam, Henry Chee Yew Foo, Steven Lim, Keat Teong Lee. Advances of macroalgae biomass for the third generation of bioethanol production[J]. Chinese Journal of Chemical Engineering, 2020, 28(2): 502-517.
[1] W. Katinonkul, J.S. Lee, S.H. Ha, J.Y. Park, Enhancement of enzymatic digestibility of oil palm empty fruit bunch by ionic-liquid pretreatment, Energy. 47(2012) 11-16. [2] B. Petroleum, BP Statistical Review of World Energy. June 2018, British Petroleum, London, 2018. [3] I. Capellán-Pérez, M. Mediavilla, C. de Castro, Ó. Carpintero, L.J. Miguel, et al., Energy. 77(2014) 641-666. [4] IEA, International Energy Agency, World Energy Outlook 2009, 2009. [5] IEA, Resources to reserves 2013, https://www.iea.org/reports/resources-to-reserves-2013. [6] S. Kraan, Mass-cultivation of carbohydrate rich macroalgae, a possible solution for sustainable biofuel production, Mitig. Adapt. Strateg. Glob. Chang. 18(2013) 27-46. [7] A. Zidanšek, R. Blinc, A. Jeglič, S. Kabashi, S. Bekteshi, I. Šlaus, Climate changes, biofuels and the sustainable future, Int. J. Hydrogen Energy. 34(2009) 6980-6983. [8] A. Kumar, K. Kumar, N. Kaushik, S. Sharma, S. Mishra, Renewable energy in India:Current status and future potentials, Renew. Sustain. Energy Rev. 14(2010) 2434-2442. [9] M. Guo, W. Song, J. Buhain, Bioenergy and biofuels:History, status, and perspective, Renew. Sust. Energ. Rev. 42(2015) 712-725. [10] J. Hill, E. Nelson, D. Tilman, S. Polasky, D. Tiffany, Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels, Proc. Natl. Acad. Sci. 103(2006) 11206-11210. [11] U.S.D. of Energy, Strategic Plan for a Thriving and Sustainable Bioeconomy, https://www.energy.gov/sites/prod/files/2016/12/f34/beto_strategic_plan_december_2016_0.pdf 2016. [12] E.I. Administration, Independent Statistics & Analysis, U.S. Dep, Energy, 2017. https://www.eia.gov/energyexplained/?page=us_energy_transportation#tab1. [13] IEA, International Energy Agency, World Energy Outlook 2012, 2012. [14] L. Korzen, I.N. Pulidindi, A. Israel, A. Abelson, A. Gedanken, Single step production of bioethanol from the seaweed Ulva rigida using sonication, RSC Adv. 5(2015) 16223-16229. [15] R.F. Association, World Fuel EtOH Production, 2018. [16] S. Kumar, Biofuels Make a Comeback despite Tough Economy, World Watch Inst. Vis. a Sustain, World, 2011. [17] EIA, 2012 Brief:U.S. Ethanol Prices and Production Lower Compared to 2011, http://www.eia.gov/todayinenergy/detail.cfm?id=9791; 2015;[accessed May 2015], (n.d.). http://www.eia.gov/todayinenergy/detail.cfm?id=9791. [18] A. Hira, L.G. De Oliveira, No substitute for oil? How Brazil developed its ethanol industry, Energy Policy 37(2009) 2450-2456. [19] S. Matsuoka, J. Ferro, P. Arruda, The Brazilian experience of sugarcane ethanol industry, Biofuels, Springer 2011, pp. 157-172. [20] A.L.C.F. Gallardo, A. Bond, Capturing the implications of land use change in Brazil through environmental assessment:Time for a strategic approach? Environ. Impact Assess. Rev. 31(2011) 261-270. [21] IEA, CO2 Emissions from Fuel Combustion, International Energy Agency, 2012, https://doi.org/10.1787/co2_fuel-2012-en[June 2018]. [22] S.I. Mussatto, G. Dragone, P.M.R. Guimarães, J.P.A. Silva, L.M. Carneiro, I.C. Roberto, A. Vicente, L. Domingues, J.A. Teixeira, Technological trends, global market, and challenges of bio-ethanol production, Biotechnol. Adv. 28(2010) 817-830. [23] M. Balat, H. Balat, C. Öz, Progress in bioethanol processing, Prog. Energy Combust. Sci. 34(2008) 551-573. [24] A.E. Farrell, R.J. Plevin, B.T. Turner, A.D. Jones, M. O'hare, D.M. Kammen, Ethanol can contribute to energy and environmental goals, Science 311(2006) 506-508. [25] L. Luo, E. van der Voet, G. Huppes, An energy analysis of ethanol from cellulosic feedstock-Corn stover, Renew. Sust. Energ. Rev. 13(2009) 2003-2011. [26] OECD-FAO, Agricultural Outlook 2017-2027, 2018. [27] S. Haghighi Mood, A. Hossein Golfeshan, M. Tabatabaei, G. Salehi Jouzani, G.H. Najafi, M. Gholami, M. Ardjmand, Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment, Renew. Sustain. Energy Rev. 27(2013) 77-93. [28] C. Eliana, R. Jorge, P. Juan, R. Luis, Effects of the pretreatment method on enzymatic hydrolysis and ethanol fermentability of the cellulosic fraction from elephant grass, Fuel. 118(2014) 41-47. [29] K.E. Kang, M. Han, S.K. Moon, H.W. Kang, Y. Kim, Y.L. Cha, G.W. Choi, Optimization of alkali-extrusion pretreatment with twin-screw for bioethanol production from Miscanthus, Fuel. 109(2013) 520-526. [30] S.C. Rabelo, R.R. Andrade, R. Maciel Filho, A.C. Costa, Alkaline hydrogen peroxide pretreatment, enzymatic hydrolysis and fermentation of sugarcane bagasse to ethanol, Fuel. 136(2014) 349-357. [31] L. Mesa, N. López, C. Cara, E. Castro, E. González, S.I. Mussatto, Techno-economic evaluation of strategies based on two steps organosolv pretreatment and enzymatic hydrolysis of sugarcane bagasse for ethanol production, Renew. Energy. 86(2016) 270-279. [32] C.S. Goh, K.T. Lee, A visionary and conceptual macroalgae-based third-generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development, Renew. Sust. Energ. Rev. 14(2010) 842-848. [33] M.G. Borines, R.L. de Leon, J.L. Cuello, Bioethanol production from the macroalgae Sargassum spp, Bioresour. Technol. 138(2013) 22-29. [34] A.T. Critchley, M. Ohno, Seaweed Resources of the World, Kanagawa International Fisheries Training Centre, Japan International Cooperation Agency, 1998. [35] FAO, Fishery and Aquaculture Statistics, Available from http://www.fao.org/fishery/static/Yearbook/YB2016_USBcard/navigation/index_content_aquaculture_e.htm 2018. [36] M.R. Brown, The amino-acid and sugar composition of 16 species of microalgae used in mariculture, J. Exp. Mar. Bio. Ecol. 145(1991) 79-99. [37] M.A. Hejazi, R.H. Wijffels, Milking of microalgae, Trends Biotechnol. 22(2004) 189-194. [38] C. Ratledge, Fatty acid biosynthesis in microorganisms being used for single cell oil production, Biochimie. 86(2004) 807-815. [39] O. Pulz, W. Gross, Valuable products from biotechnology of microalgae, Appl. Microbiol. Biotechnol. 65(2004) 635-648. [40] FAO, Crop Production, http://faostat3.fao.org/. Retrieved on March 23, 2019, (2018). [41] R. Lemus, E.C. Brummer, K.J. Moore, N.E. Molstad, C.L. Burras, M.F. Barker, Biomass yield and quality of 20 switchgrass populations in southern Iowa, USA, Biomass Bioenergy 23(2002) 433-442. [42] K.J. Shinners, B.N. Binversie, Fractional yield and moisture of corn stover biomass produced in the Northern US Corn Belt, Biomass Bioenergy 31(2007) 576-584. [43] J. Trivedi, M. Aila, D.P. Bangwal, S. Kaul, M.O. Garg, Algae based biorefinery-How to make sense? Renew. Sust. Energ. Rev. 47(2015) 295-307. [44] F.M. Kerton, Y. Liu, K.W. Omari, K. Hawboldt, Green chemistry and the ocean-based biorefinery, Green Chem. 15(2013) 860-871. [45] L. Lin, M. Tako, F. Hongo, Isolation and characterization of iota-carrageenan from Eucheuma serra (Togekirinsai), J. Appl. Glycosci. 47(2000) 303-310. [46] C.L. Hurd, P.J. Harrison, K. Bischof, C.S. Lobban, Seaweed Ecology and Physiology, Cambridge University Press, 2014. [47] K. Gao, K.R. McKinley, Use of macroalgae for marine biomass production and CO2 remediation:A review, J. Appl. Phycol. 6(1994) 45-60. [48] C.S. Lobban, M.J. Wynne, The Biology of Seaweeds, Univ of California Press, 1981. [49] R.P. John, G.S. Anisha, Macroalgae and their potential for biofuel, Plant Sci. Rev. 2012(2011) 151. [50] A.S. Boonstra, The Macroalgae-based Biorefinery-A Comprehensive Review and a Prospective Study of Future Macroalgae-based Biorefinery Systems, 2015. [51] M. Song, H. Pham, J. Seon, H. Woo, Overview of anaerobic digestion process for biofuels production from marine macroalgae:A developmental perspective on brown algae, Korean J. Chem. Eng. (2015) 1-9. [52] K.A. Jung, S.-R. Lim, Y. Kim, J.M. Park, Potentials of macroalgae as feedstocks for biorefinery, Bioresour. Technol. 135(2013) 182-190. [53] T. Burton, H. Lyons, Y. Lerat, M. Stanley, M.B. Rasmussen, A Review of the Potential of Marine Algae as a Source of Biofuel in Ireland, Sustainable Energy Ireland-SEI, Dublin, 2009. [54] G.P.B. Marquez, W.J.E. Santiañez, G.C. Trono Jr., M.N.E. Montaño, H. Araki, H. Takeuchi, T. Hasegawa, Seaweed biomass of the Philippines:Sustainable feedstock for biogas production, Renew. Sustain. Energy Rev. 38(2014) 1056-1068. [55] S. Kraan, Algal Polysaccharides, Novel Applications and Outlook, INTECH Open Access Publisher, 2012. [56] E.J. Yun, H.T. Kim, K.M. Cho, S. Yu, S. Kim, I.-G. Choi, K.H. Kim, Pretreatment and saccharification of red macroalgae to produce fermentable sugars, Bioresour. Technol. 199(2016) 311-318. [57] S.H. Ho, X. Ye, T. Hasunuma, J.-S. Chang, A. Kondo, Perspectives on engineering strategies for improving biofuel production from microalgae-A critical review, Biotechnol. Adv. 32(2014) 1448-1459. [58] S.J.A. van Kuijk, A.S.M. Sonnenberg, J.J.P. Baars, W.H. Hendriks, J.W. Cone, Fungal treated lignocellulosic biomass as ruminant feed ingredient:A review, Biotechnol. Adv. 33(2015) 191-202. [59] L. Paulova, P. Patakova, B. Branska, M. Rychtera, K. Melzoch, Lignocellulosic ethanol:Technology design and its impact on process efficiency, Biotechnol. Adv. 33(2015) 1091-1107. [60] A. Takagaki, C. Tagusagawa, K. Domen, Glucose production from saccharides using layered transition metal oxide and exfoliated nanosheets as a water-tolerant solid acid catalyst, Chem. Commun. (2008) 5363-5365. [61] R. Rinaldi, R. Palkovits, F. Schüth, Depolymerization of cellulose using solid catalysts in ionic liquids, Angew. Chemie Int. Ed. 47(2008) 8047-8050. [62] J.A. Bootsma, B.H. Shanks, Cellobiose hydrolysis using organic-inorganic hybrid mesoporous silica catalysts, Appl. Catal. A Gen. 327(2007) 44-51. [63] G. Roesijadi, S.B. Jones, L.J. Snowden-Swan, Y. Zhu, Macroalgae as a Biomass Feedstock:A Preliminary Analysis, PNNL 19944, Pacific Northwest Natl. Lab, Richland, WA, 2010. [64] S. Wegeberg, C. Felby, Algae Biomass for Bioenergy in Denmark, Biol. Challenges Oppor. Copenhagen Univ, Copenhagen, 2010. [65] M. Meinita, Y.K. Hong, G.T. Jeong, Detoxification of acidic catalyzed hydrolysate of Kappaphycus alvarezii (cottonii), Bioprocess Biosyst. Eng. 35(2012) 93-98. [66] B.J. Gosch, M. Magnusson, N.A. Paul, R. Nys, Total lipid and fatty acid composition of seaweeds for the selection of species for oil-based biofuel and bioproducts, GCB Bioenergy 4(2012) 919-930. [67] E.W. Becker, Microalgae:Biotechnology and Microbiology, Cambridge University Press, 1994. [68] A.B. Ross, J.M. Jones, M.L. Kubacki, T. Bridgeman, Classification of macroalgae as fuel and its thermochemical behaviour, Bioresour. Technol. 99(2008) 6494-6504. [69] S.M. Renaud, J.T. Luong-Van, Seasonal Variation in the Chemical Composition of Tropical Australian Marine Macroalgae, in:Eighteenth Int, Springer, Seaweed Symp, 2007155-161. [70] A. Jensen, Present and Future Needs for Algae and Algal Products, in:Fourteenth Int, Springer, Seaweed Symp, 199315-23. [71] B.A. Yoza, E.M. Masutani, The analysis of macroalgae biomass found around Hawaii for bioethanol production, Environ. Technol. 34(2013) 1859-1867. [72] L.M.L. Laurens, T.A. Dempster, H.D.T. Jones, E.J. Wolfrum, S. Van Wychen, J.S.P. McAllister, M. Rencenberger, K.J. Parchert, L.M. Gloe, Algal biomass constituent analysis:method uncertainties and investigation of the underlying measuring chemistries, Anal. Chem. 84(2012) 1879-1887. [73] E.J. Yun, I.-G. Choi, K.H. Kim, Red Macroalgae as a Sustainable Resource for BioBased Products, Trends Biotechnol, 2015. [74] N. Trivedi, V. Gupta, C.R.K. Reddy, B. Jha, Enzymatic hydrolysis and production of bioethanol from common macrophytic green alga Ulva fasciata Delile, Bioresour. Technol. 150(2013) 106-112. [75] R.E. Cian, S.R. Drago, F.S. de Medina, O. Martínez-Augustin, Proteins and carbohydrates from red seaweeds:evidence for beneficial effects on gut function and microbiota, Mar. Drugs. 13(2015) 5358-5383. [76] J.J. Yoon, Y.J. Kim, S.H. Kim, H.J. Ryu, J.Y. Choi, G.S. Kim, M.K. Shin, Production of polysaccharides and corresponding sugars from red seaweed, Adv. Mater. Res., Trans Tech Publ (2010) 463-466. [77] N.-J. Kim, H. Li, K. Jung, H.N. Chang, P.C. Lee, Ethanol production from marine algal hydrolysates using Escherichia coli KO11, Bioresour. Technol. 102(2011) 7466-7469. [78] Y.S. Sung-Soo, Jang Motoharu Uchida, Minato Wakisaka, Production of mono sugar from acid hydrolysis of seaweed, African J. Biotechnol. 11(2012) 1953-1963. [79] J.-H. Park, J.-Y. Hong, H.C. Jang, S.G. Oh, S.-H. Kim, J.-J. Yoon, Y.J. Kim, Use of Gelidium amansii as a promising resource for bioethanol:A practical approach for continuous dilute-acid hydrolysis and fermentation, Bioresour. Technol. 108(2011) 83-88. [80] H.T. Kim, E.J. Yun, D. Wang, J.H. Chung, I.-G. Choi, K.H. Kim, High temperature and low acid pretreatment and agarase treatment of agarose for the production of sugar and ethanol from red seaweed biomass, Bioresour. Technol. 136(2013) 582-587. [81] N. Wei, J. Quarterman, Y.-S. Jin, Marine macroalgae:an untapped resource for producing fuels and chemicals, Trends Biotechnol. 31(2013) 70-77. [82] V.L. Campo, D.F. Kawano, D.B. da Silva, I. Carvalho, Carrageenans:biological properties, chemical modifications and structural analysis-a review, Carbohydr. Polym. 77(2009) 167-180. [83] S. Mutripah, M.D.N. Meinita, J.-Y. Kang, G.-T. Jeong, A.B. Susanto, R.E. Prabowo, Y.-K. Hong, Bioethanol production from the hydrolysate of Palmaria palmata using sulfuric acid and fermentation with brewer's yeast, J. Appl. Phycol. 26(2014) 687-693. [84] H. Chen, D. Zhou, G. Luo, S. Zhang, J. Chen, Macroalgae for biofuels production:Progress and perspectives, Renew. Sustain. Energy Rev. 47(2015) 427-437. [85] J. Adams, J. Gallagher, I. Donnison, Fermentation study on Saccharina latissima for bioethanol production considering variable pre-treatments, J. Appl. Phycol. 21(2009) 569-574. [86] S.M. Cardoso, L.G. Carvalho, P.J. Silva, M.S. Rodrigues, O.R. Pereira, L. Pereira, Bioproducts from seaweeds:a review with special focus on the Iberian Peninsula, Curr. Org. Chem. 18(2014) 896-917. [87] C. Scullin, V. Stavila, A. Skarstad, J.D. Keasling, B.A. Simmons, S. Singh, Optimization of renewable pinene production from the conversion of macroalgae Saccharina latissima, Bioresour. Technol. 184(2015) 415-420. [88] M. Enquist-Newman, A.M.E. Faust, D.D. Bravo, C.N.S. Santos, R.M. Raisner, A. Hanel, P. Sarvabhowman, C. Le, D.D. Regitsky, S.R. Cooper, L. Peereboom, A. Clark, Y. Martinez, J. Goldsmith, M.Y. Cho, P.D. Donohoue, L. Luo, B. Lamberson, P. Tamrakar, E.J. Kim, J.L. Villari, A. Gill, S.A. Tripathi, P. Karamchedu, C.J. Paredes, V. Rajgarhia, H.K. Kotlar, R.B. Bailey, D.J. Miller, N.L. Ohler, C. Swimmer, Y. Yoshikuni, Efficient ethanol production from brown macroalgae sugars by a synthetic yeast platform, Nature. 505(2014) 239-243. [89] G. Michel, T. Tonon, D. Scornet, J.M. Cock, B. Kloareg, The cell wall polysaccharide metabolism of the brown alga Ectocarpus siliculosus. Insights into the evolution of extracellular matrix polysaccharides in Eukaryotes, New Phytol. 188(2010) 82-97. [90] K. Bucholc, M. Szymczak-Żyła, L. Lubecki, A. Zamojska, P. Hapter, E. Tjernström, G. Kowalewska, Nutrient content in macrophyta collected from southern Baltic Sea beaches in relation to eutrophication and biogas production, Sci. Total Environ. 473-474(2014) 298-307. [91] A. Robic, C. Rondeau-Mouro, J.-F. Sassi, Y. Lerat, M. Lahaye, Structure and interactions of ulvan in the cell wall of the marine green algae Ulva rotundata (Ulvales, Chlorophyceae), Carbohydr. Polym. 77(2009) 206-216. [92] H.-W. Heldt, F. Heldt, Plant Biochemistry and Molecular Biology, 1997. [93] C. Hoek, Algae:An Introduction to Phycology, Cambridge university press, 1995. [94] M. Lahaye, A. Robic, Structure and functional properties of ulvan, a polysaccharide from green seaweeds, Biomacromolecules. 8(2007) 1765-1774. [95] M. Yanagisawa, S. Kawai, K. Murata, Strategies for the production of high concentrations of bioethanol from seaweeds:Production of high concentrations of bioethanol from seaweeds, Bioengineered. 4(2013) 224-235. [96] M. Lahaye, M. Brunel, E. Bonnin, Fine chemical structure analysis of oligosaccharides produced by an ulvan-lyase degradation of the water-soluble cell-wall polysaccharides from Ulva sp.(Ulvales, Chlorophyta), Carbohydr. Res. 304(1997) 325-333. [97] M. Lahaye, B. Ray, Cell-wall polysaccharides from the marine green alga Ulva "rigida"(Ulvales, Chlorophyta)-NMR analysis of ulvan oligosaccharides, Carbohydr. Res. 283(1996) 161-173. [98] P.I. Hargreaves, C.A. Barcelos, A.C.A. da Costa, N. Pereira Jr., Production of ethanol 3G from Kappaphycus alvarezii:Evaluation of different process strategies, Bioresour. Technol. 134(2013) 257-263. [99] F. Abd-Rahim, H. Wasoh, M.R. Zakaria, A. Ariff, R. Kapri, N. Ramli, L. Siew-Ling, Production of high yield sugars from Kappaphycus alvarezii using combined methods of chemical and enzymatic hydrolysis, Food Hydrocoll. 42(Part 2) (2014) 309-315. [100] S. Lee, Y. Oh, D. Kim, D. Kwon, C. Lee, J. Lee, Converting carbohydrates extracted from marine algae into ethanol using various ethanolic Escherichia coli strains, Appl. Biochem. Biotechnol. 164(2011) 878-888. [101] M. Meinita, J.-Y. Kang, G.-T. Jeong, H. Koo, S. Park, Y.-K. Hong, Bioethanol production from the acid hydrolysate of the carrageenophyte Kappaphycus alvarezii (cottonii), J. Appl. Phycol. 24(2012) 857-862. [102] M. Meinita, Y.-K. Hong, G.-T. Jeong, Comparison of sulfuric and hydrochloric acids as catalysts in hydrolysis of Kappaphycus alvarezii (cottonii), Bioprocess Biosyst. Eng. 35(2012) 123-128. [103] Y. Khambhaty, K. Mody, M.R. Gandhi, S. Thampy, P. Maiti, H. Brahmbhatt, K. Eswaran, P.K. Ghosh, Kappaphycus alvarezii as a source of bioethanol, Bioresour. Technol. 103(2012) 180-185. [104] Y.Y. Teh, K.T. Lee, W.-H. Chen, S.-C. Lin, H.-K. Sheen, I.S. Tan, Dilute sulfuric acid hydrolysis of red macroalgae Eucheuma denticulatum with microwave-assisted heating for biochar production and sugar recovery, Bioresour. Technol. 246(2017) 20-27. [105] Y.-B. Huang, Y. Fu, Hydrolysis of cellulose to glucose by solid acid catalysts, Green Chem. 15(2013) 1095-1111. [106] M.J. Taherzadeh, K. Karimi, Enzymatic-based hydrolysis processes for ethanol, Bioresources. 2(2007) 707-738. [107] D. Choi, H.S. Sim, Y.L. Piao, W. Ying, H. Cho, Sugar production from raw seaweed using the enzyme method, J. Ind. Eng. Chem. 15(2009) 12-15. [108] L. Ge, P. Wang, H. Mou, Study on saccharification techniques of seaweed wastes for the transformation of ethanol, Renew. Energy 36(2011) 84-89. [109] M. Yanagisawa, K. Nakamura, O. Ariga, K. Nakasaki, Production of high concentrations of bioethanol from seaweeds that contain easily hydrolyzable polysaccharides, Process Biochem. 46(2011) 2111-2116. [110] F. Talebnia, D. Karakashev, I. Angelidaki, Production of bioethanol from wheat straw:an overview on pretreatment, hydrolysis and fermentation, Bioresour. Technol. 101(2010) 4744-4753. [111] S. Kumar, R. Gupta, G. Kumar, D. Sahoo, R.C. Kuhad, Bioethanol production from Gracilaria verrucosa, a red alga, in a biorefinery approach, Bioresour. Technol. 135(2013) 150-156. [112] R. Harun, J.W.S. Yip, S. Thiruvenkadam, W.A.W.A.K. Ghani, T. Cherrington, M.K. Danquah, Algal biomass conversion to bioethanol-A step-by-step assessment, Biotechnol. J. 9(2014) 73-86. [113] J.M.M. Adams, T.A. Toop, I.S. Donnison, J.A. Gallagher, Seasonal variation in Laminaria digitata and its impact on biochemical conversion routes to biofuels, Bioresour. Technol. 102(2011) 9976-9984. [114] N. Schultz-Jensen, A. Thygesen, F. Leipold, S.T. Thomsen, C. Roslander, H. Lilholt, A.B. Bjerre, Pretreatment of the macroalgae Chaetomorpha linum for the production of bioethanol-Comparison of five pretreatment technologies, Bioresour. Technol. 140(2013) 36-42. [115] S. Monavari, M. Galbe, G. Zacchi, The influence of solid/liquid separation techniques on the sugar yield in two-step dilute acid hydrolysis of softwood followed by enzymatic hydrolysis, Biotechnol. Biofuels. 2(2009) 6. [116] A. Cabiac, E. Guillon, F. Chambon, C. Pinel, F. Rataboul, N. Essayem, Cellulose reactivity and glycosidic bond cleavage in aqueous phase by catalytic and non catalytic transformations, Appl. Catal. A Gen. 402(2011) 1-10. [117] P. Alvira, E. Tomás-Pejó, M. Ballesteros, M.J. Negro, Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis:A review, Bioresour. Technol. 101(2010) 4851-4861. [118] T.N. Ang, G.C. Ngoh, A.S.M. Chua, Comparative study of various pretreatment reagents on rice husk and structural changes assessment of the optimized pretreated rice husk, Bioresour. Technol. 135(2013) 116-119. [119] J.Y. Lee, Y.S. Kim, B.H. Um, K. Oh, Pretreatment of Laminaria japonica for bioethanol production with extremely low acid concentration, Renew. Energy. 54(2013) 196-200. [120] J.Y. Lee, Y.S. Kim, Optimization the process variables for the fractionation of Saccharina japonica to enhance glucan content, J. Ind. Eng. Chem. 19(2013) 938-943. [121] L. Tabil, M. Kashaninejad, P. Adapa, Biomass Feedstock Pre-processing-Part 1:PreTreatment, INTECH Open Access Publisher, 2011. [123] S. Tojo, T. Hirasawa, Research Approaches to Sustainable Biomass Systems, Academic Press, 2013. [124] G. Busca, Acid catalysts in industrial hydrocarbon chemistry, Chem. Rev. 107(2007) 5366-5410. [125] F. Guo, Z. Fang, C.C. Xu, R.L. Smith Jr., Solid acid mediated hydrolysis of biomass for producing biofuels, Prog. Energy Combust. Sci. 38(5) (2012) 672-690. [126] K. Vigier, F. Jérôme, Heterogeneously-catalyzed conversion of carbohydrates, in:A.P. Rauter, P. Vogel, Y. Queneau (Eds.), Carbohydrates Sustain. Dev. II, Springer Berlin/Heidelberg, 2010:pp. 63-92. [127] S. Shen, C. Wang, B. Cai, H. Li, Y. Han, T. Wang, H. Qin, Heterogeneous hydrolysis of cellulose into glucose over phenolic residue-derived solid acid, Fuel. 113(2013) 644-649. [128] D. Yamaguchi, M. Hara, Starch saccharification by carbon-based solid acid catalyst, Solid State Sci. 12(2010) 1018-1023. [129] M. Marzo, A. Gervasini, P. Carniti, Hydrolysis of disaccharides over solid acid catalysts under green conditions, Carbohydr. Res. 347(2012) 23-31. [130] R. Ormsby, J.R. Kastner, J. Miller, Hemicellulose hydrolysis using solid acid catalysts generated from biochar, Catal. Today. 190(2012) 89-97. [131] X. Zhang, H. Lu, K. Wu, Y. Liu, C. Liu, Y. Zhu, B. Liang, Hydrolysis of mechanically pre-treated cellulose catalyzed by solid acid SO42-TiO2 in water-ethanol solvent, Chin J. Chem. Eng. 28(1) (2020) 136-142. [132] N.-O. Nilvebrant, A. Reimann, S. Larsson, L. Jönsson, Detoxification of lignocellulose hydrolysates with ion-exchange resins, Appl. Biochem. Biotechnol. 91-93(2001) 35-49. [133] M.A. Harmer, W.E. Farneth, Q. Sun, High surface area Nafion resin/silica nanocomposites:a new class of solid acid catalyst, J. Am. Chem. Soc. 118(1996) 7708-7715. [134] G.-T. Jeong, S.-K. Kim, D.-H. Park, Application of solid-acid catalyst and marine macro-algae Gracilaria verrucosa to production of fermentable sugars, Bioresour. Technol. 181(2015) 1-6. [135] I.S. Tan, M.K. Lam, K.T. Lee, Hydrolysis of macroalgae using heterogeneous catalyst for bioethanol production, Carbohydr. Polym. 94(2013) 561-566. [136] I.S. Tan, K.T. Lee, Solid acid catalysts pretreatment and enzymatic hydrolysis of macroalgae cellulosic residue for the production of bioethanol, Carbohydr. Polym. 124(2015) 311-321. [137] I.S. Tan, K.T. Lee, Comparison of different process strategies for bioethanol production from Eucheuma cottonii:An economic study, Bioresour. Technol. 199(2016) 336-346. [138] G. Feng, Z. Fang, Solid- and nano-catalysts pretreatment and hydrolysis techniques, in:Z. Fang (Ed.), Pretreat. Tech. Biofuels Biorefineries, Springer Berlin, Heidelberg 2013, pp. 339-366. [139] H.-X. Li, X. Zhang, Q. Wang, K. Zhang, Q. Cao, L. Jin, Preparation of the recycled and regenerated mesocarbon microbeads-based solid acid and its catalytic behaviors for hydrolysis of cellulose, Bioresour. Technol. 270(2018) 166-171. [140] L.I. Sen, W. Eika, Direct saccharification of rice straw using a solid acid catalyst, J. Jpn. Inst. Energy. 90(11) (2011) 1065-1071. [141] M. Daroch, S. Geng, G. Wang, Recent advances in liquid biofuel production from algal feedstocks, Appl. Energy. 102(2013) 1371-1381. [142] O.K. Lee, A.L. Kim, D.H. Seong, C.G. Lee, Y.T. Jung, J.W. Lee, E.Y. Lee, Chemo-enzymatic saccharification and bioethanol fermentation of lipid-extracted residual biomass of the microalga, Dunaliella tertiolecta, Bioresour. Technol. 132(2013) 197-201. [143] F.C. Wu, J.Y. Wu, Y.J. Liao, M.Y. Wang, I.L. Shih, Sequential acid and enzymatic hydrolysis in situ and bioethanol production from Gracilaria biomass, Bioresour. Technol. 156(2014) 123-131. [144] K.P. Candra, Study on bioethanol production using red seaweed Eucheuma cottonii from Bontang sea water, J. Coast. Dev. 15(2012) 45-50. [145] Z. Kádár, Z. Szengyel, K. Réczey, Simultaneous saccharification and fermentation (SSF) of industrial wastes for the production of ethanol, Ind. Crops Prod. 20(2004) 103-110. [146] S. Srichuwong, M. Fujiwara, X. Wang, T. Seyama, R. Shiroma, M. Arakane, N. Mukojima, K. Tokuyasu, Simultaneous saccharification and fermentation (SSF) of very high gravity (VHG) potato mash for the production of ethanol, Biomass and Bioenergy. 33(2009) 890-898. [147] M.A. das Neves, T. Kimura, N. Shimizu, M. Nakajima, State of the art and future trends of bioethanol production, Dyn. Biochem. Process Biotechnol. Mol. Biol. 1(2007) 1-14. [148] H.M. Kim, S.G. Wi, S. Jung, Y. Song, H.-J. Bae, Efficient approach for bioethanol production from red seaweed Gelidium amansii, Bioresour. Technol. 175(2015) 128-134. [149] J. Ye Lee, P. Li, J. Lee, H.J. Ryu, K.K. Oh, Ethanol production from Saccharina japonica using an optimized extremely low acid pretreatment followed by simultaneous saccharification and fermentation, Bioresour. Technol. 127(2013) 119-125. [150] J. Lian, R. Chao, H. Zhao, Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol, Metab. Eng. 23(2014) 92-99. [151] P. Vinuselvi, S.K. Lee, Rewiring carbon catabolite repression for microbial cell factory, Biochem. Mol. Biol. Reports. 45(2012) 59-70. [152] J.H. Park, S.H. Kim, H.D. Park, J.S. Kim, J.-J. Yoon, Simultaneous utilization of galactose and glucose by Saccharomyces cerevisiae mutant strain for ethanol production, Renew. Energy. 65(2014) 213-218. [153] C.R. Carere, R. Sparling, N. Cicek, D.B. Levin, Third generation biofuels via direct cellulose fermentation, Int. J. Mol. Sci. 9(2008) 1342-1360. [154] C.A. Cardona, O.J. Sanchez, L.F. Gutierrez, Process Synthesis for Fuel Ethanol Production, CRC Press, 2009. [156] A.J. Wargacki, E. Leonard, M.N. Win, D.D. Regitsky, C.N.S. Santos, P.B. Kim, S.R. Cooper, R.M. Raisner, A. Herman, A.B. Sivitz, An engineered microbial platform for direct biofuel production from brown macroalgae, Science 335(2012) 308-313. [157] N. Trivedi, C.R.K. Reddy, R. Radulovich, B. Jha, Solid state fermentation (SSF)-derived cellulase for saccharification of the green seaweed Ulva for bioethanol production, Algal Res. 9(2015) 48-54. [158] L. Wang, M. Sharifzadeh, R. Templer, R.J. Murphy, Bioethanol production from various waste papers:Economic feasibility and sensitivity analysis, Appl. Energy. 111(2013) 1172-1182. [159] C.F. Triana, J.A. Quintero, R.A. Agudelo, C.A. Cardona, J.C. Higuita, Analysis of coffee cut-stems (CCS) as raw material for fuel ethanol production, Energy. 36(2011) 4182-4190. [160] J. Zhang, Z. Fang, H. Deng, X. Zhang, J. Bao, Cost analysis of cassava cellulose utilization scenarios for ethanol production on flowsheet simulation platform, Bioresour. Technol. 134(2013) 298-306. [161] P. Tunå, C. Hulteberg, Woody biomass-based transportation fuels-A comparative techno-economic study, Fuel. 117(2014) 1020-1026. [162] A. Philippsen, P. Wild, A. Rowe, Energy input, carbon intensity and cost for ethanol produced from farmed seaweed, Renew. Sustain. Energy Rev. 38(2014) 609-623. [163] J.H. Reith, E.P. Deurwaarder, K. Hemmes, A. Curvers, P. Kamermans, W. Brandenburg, G. Zeeman, Bio-offshore; Largescale Cultivation of Sea Weeds Combined with Offshore Windmill Parks in the North Sea, Energy Res. Netherlands (ECN), Petten Wageningen Univ. Res. Centre, Wageningen, 2005. [164] M. Alvarado-Morales, A. Boldrin, D.B. Karakashev, S.L. Holdt, I. Angelidaki, T. Astrup, Life cycle assessment of biofuel production from brown seaweed in Nordic conditions, Bioresour. Technol. 129(2013) 92-99. [165] D. Aitken, C. Bulboa, A. Godoy-Faundez, J.L. Turrion-Gomez, B. Antizar-Ladislao, Life cycle assessment of macroalgae cultivation and processing for biofuel production, J. Clean. Prod. 75(2014) 45-56. [166] J. Langlois, J. Sassi, G. Jard, J. Steyer, J. Delgenes, A. Hélias, Life cycle assessment of biomethane from offshore-cultivated seaweed, Biofuels, Bioprod. Biorefining. 6(2012) 387-404. [167] M. Aresta, A. Dibenedetto, G. Barberio, Utilization of macro-algae for enhanced CO2 fixation and biofuels production:development of a computing software for an LCA study, Fuel Process. Technol. 86(2005) 1679-1693. [168] M. Seghetta, X. Hou, S. Bastianoni, A.-B. Bjerre, M. Thomsen, Life cycle assessment of macroalgal biorefinery for the production of ethanol, proteins and fertilizers-A step towards a regenerative bioeconomy, J. Clean. Prod. 137(2016) 1158-1169. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||