[1] M. Khalil, B.M. Jan, C.W. Tong, M.A. Berawi, Advanced nanomaterials in oil and gas industry:Design, application and challenges, J. Applied Energy 191(2017) 287-310. [2] R. Kumar, A. Gupta, S.R. Dhakate, Nanoparticles-decorated coal tar pitch-based carbon foam with enhanced electromagnetic radiation absorption capability, J. RSC. Adv 5(2015) 20256-20264. [3] S. Xu, A.H. Habib, A.D. Pickel, M.E. McHenry, Magnetic nanoparticle-based solder composites for electronic packaging applications, J. Prog. Mater. Sci 67(2015) 95-160. [4] B.H. Kim, M.J. Hackett, J. Park, T. Hyeon, Synthesis, characterization, and application of ultrasmall nanoparticles, J. Chem. Mater 26(2014) 59-71. [5] A.R. Barron, Nanotechnology for the Oil and Gas Industry, PhD Thesis, Rice University, Houston, Texas, 2008. [6] R. Saidur, K.Y. Leong, H.A. Mohammad, A review on applications and challenges of nanofluids, J. Renew. Sustain. Energy. Rev 15(2011) 1646-1668. [7] L. Hendraningrat, S. Li, O. Torsaeter, A core investigation of nanofluid enhanced oil recovery, J. Pet. Sci. Eng. 111(2011) 128-138. [8] A.K. Mittal, Y. Christi, U.C. Banerjee, Synthesis of metallic nanoparticles using plant extracts, J. Biotechnol. Adv 31(2013) 346-356. [9] K.N. Thakkar, S.S. Mhatre, R.Y. Parikh, Biological synthesis of metallic nanoparticles, J. Nanomed-Nanotech 6(2010) 257-262. [10] S.K. Maity, J. Ancheyta, G. Marroquin, Catalytic aquathermolysis used for viscosity reduction of heavy crude oils:A review, J. Energy Fuel 24(2010) 2809-2816. [11] G. Schmid, Metal Nanoparticles, Synthesis of, Encyclopedia of Inorganic Chemistry, John Wiley & Sons, Ltd., Hoboken, New Jersey, 2006. [12] M.F. Fakoya, S.N. Shah, P. Harshkumar, Nanotechnology:Innovative applications in the oil & gas industry, Int. J. Glo. Adv. Mat 1(1) (2018) 16-30. [13] L. Fedele, L. Colla, S. Bobbo, S. Barison, F. Agresti, Experimental stability analysis of different water-based nanofluids, Nanoscale. Res. Lett 6(300) (2011) 1-8. [14] N.D. Kandpal, N. Sah, R. Loshali, R. Joshi, J. Prasad, Co-precipitation method of synthesis and characterization of iron oxide nanoparticles, J. Sci. Ind. Res. 73(2014) 87-90. [15] J.S. Basuki, A. Jacquemin, L. Esser, Y. Li, C. Boyer, T.P. Davis, A block copolymerstabilized co-precipitation approach to magnetic iron oxide nanoparticles for potential use as MRI contrast agents, Polym. Chem. 5(2014) 2611-2620. [16] N. Bayal, P. Jeevanandam, Synthesis of TiO2-MgO mixed metal oxide nanoparticles via sol-gel method and studies on their optical properties, Ceram. Int. 40(2014) 15463-15477. [17] A. Kumar, A. Saxena, A. De, R. Shankar, S. Mozumdar, Controlled synthesis of sizetunable nickel and nickel oxide nanoparticles using water-in-oil microemulsions, J. Adv. Nat. Sci:Nanosci. Nanotechnol 4(2013), 025009. [18] Y. Song, X. Li, C. Wei, J. Fu, F. Xu, A green strategy to prepare metal oxide superstructure from metal-organic frameworks, J. Sci. Rep 5(2015) 8401. [19] M. Najafi, A. Abbasi, M. Master-Farahani, J. Janczak, Sonochemical preparation of bimetallic (Cu/Mo) oxide nanoparticles as catalysts for dye degradation under mild conditions, J.Polyhedron 93(2015) 76-83. [20] T.K. Indira, P.K. Laksmi, Magnetic nanoparticles-A review, Int. J. Pharm. Sci. Nanotechnol 3(2010) 1035-1042. [21] H. Soleimani, N. Yahya, M.K. Baig, L. Khodapanah, M. Sabet, Synthesis of carbon nanotubes for oil-wet interfacial tension reduction, J. Oil. Gas. Res 1(2015) 1-5. [22] C. Laurent, E. Flahaut, A. Peigney, The weight and density of carbon nanotubes versus the number of walls and diameter, J. Carbon 48(2010) 2994-2996. [23] J. Prasek, J. Drbohlavova, J. Chomoucka, J. Hubalek, O. Jasek, Methods for carbon nanotubes synthesis-A review, J. Mater. Chem 21(2011) 15872-15884. [24] J.G. Duque, A.N.G. Parra-Vasquez, N. Behabtu, M.J. Green, A.L. Higginbotham, Diameter-dependent solubility of single-walled carbon nanotubes, J. ACS Nano 4(2010) 3063-3072. [25] M. Sadeghalvaad, S. Sabbaghi, The effect of the TiO2/polyacrylamide nanocomposite on water-based drilling fluid properties, J. Powder Technol. 272(2015) 113-119. [26] L.D. Pachon, G. Rothenberg, Transition-metal nanoparticles:Synthesis, stability and the leaching issue, J. Appl. Organomet. Chem 22(2008) 288-299. [27] M. Wilson, K. Kannangara, G. Smith, M. Simmons, B. Raguse, Nanotechnology, Chapman & Hall/CRC, Florida, 2002. [28] C. Oncel, Y. Yurum, Carbon nanotube synthesis via the catalytic CVD method:A review on the effect of reaction parameters, Fullerenes, Nanotubes and Carbon Nanostructures 14(1) (2006) 17-37. [29] A. Shashurin, M. Keidar, Synthesis of 2D materials in arc plasmas, J. Phys. D. Appl. Phys. 48(31) (2015), 314007. [30] A.B. Moghaddam, T. Nazari, J. Badraghi, M. Kazemzad, Synthesis of ZnO nanoparticles and electrodeposition of polypyrrole/ZnO nanocomposite, film, Int. J. Electrochem. Sci. 4(2009) 247-257. [31] L.L. Hench, J.K. West, The sol-gel process, J. Chemical reviews 90(1) (1990) 33-72. [32] S. Petrovic, L. Rozic, V. Jovic, S. Stojadinovic, B. Grbić, N. Radić, J. Lamovec, R. Vasilić, Optimization of a nanoparticle ball milling process parameters using the response surface method, J. Adv. Pow. Tech 29(9) (2018) 2129-2139. [33] L. He, J. Xu, D. Bin, Application of nanotechnology in petroleum exploration and development, J. Petrol. Explor. Develop 43(6) (2016) 1107-1115. [34] P. Swaminathan, R. Nagarajan, S. Jitendra, Applications of nanotechnology for upstream oil and gas industry, J. Nano. Research 24(2013) 7-15. [35] S. Sainson, Electromagnetic Seabed Logging, A New Tool for Geoscientists, Ed. Springer, eBook ISBN 978-3-319-45355-2, 2017. [36] R.K. Pandey, S. Krishna, J. Rana, N.K. Hazarika, Emerging applications of nanotechnology in oil and gas industry, International Journal For Technological Research In Engineering 3(2016) 2347-4718. [37] R. Krishnamoorti, Extracting the benefits of nanotechnology for the oil industry, J. petro. Tech 58(11) (2006) 24-26. [38] M.N. Agista, K. Guo, Zh. Yu, A state-of-the-art, review of nanoparticles application in petroleum with a focus on enhanced oil recovery, J. Appl. Sci 8(2018) 871. [39] S. Ryoo, A.R. Rahmani, K.Y. Yoon, M. Prodanovic, C. Kotsmar, Theoretical and experimental investigation of the motion of multiphase fluids containing paramagnetic nanoparticles, J. Pet. Sci. Eng 81(2012) 129-144. [40] M.S. Zaman, M.R. Islam, S. Mokhatab, Nanotechnology prospects in the petroleum industry, J. Petroleum Science and Technology 30(2012) 1053-1058. [41] S. Chakraborty, M. Pal, Highly efficient novel carbon monoxide gas sensor based on bismuth ferrite nanoparticles for environmental monitoring, New J. Chem. 42(2018) 7188-7196. [42] M.F. Fakoya, S.N. Shah, Emergence of nanotechnology in the oil and gas industry:Emphasis on the application of silica nanoparticles, J. Petroleum 3(2017) 391-405. [43] N. Chegenizadeh, A. Saeedi, X. Quan, Application of nanotechnology for enhancing oil recovery:A review, J. Petroleum 2(2016) 324-333. [44] L. Morrow, D.K. Potter, Andrew R. Barron, Detection of magnetic nanoparticles against proppant and shale reservoir rocks, J. Experimental Nanoscience 10(2015) 1028-1041. [45] Y.C. Park, J. Paulsen, R.J. Nap, R.D. Whitaker, V. Mathiyazhagan, Adsorption of superparamagnetic iron oxide nanoparticles on silica and calcium carbonate sand, J. ACS 30(3) (2014) 784-792. [46] C. Kotsmar, K.Y. Yoon, H. Yu, S.Y. Ryoo, J. Barth, Stable citrate-coated iron oxide superparamagnetic nanoclusters at high salinity, J. Ind. Eng. Chem. Res 49(2010) 12435-12443. [47] B. Urasinska-Wojcik, T. Vincent, J.W. Gardner, H2S sensing properties of WO3 based gas sensor, J. Procedia Engineering 168(2016) 255-258. [48] M.Z. Atashbar, S. Singamaneni, Room temperature gas sensor based on metallic nanowires, J. Sensor. Actuator. B. Chem 111-112(2005) 13-21. [49] A. Hoel, L.F. Reyes, P. Heszler, V. Lantto, C.G. Granqvist, Nanomaterials for environmental applications:Novel WO3-based gas sensors made by advanced gas deposition, Curr. Appl. Phys. 4(2004) 547-553. [50] E. Rodriguez, R.M. Robert, H. Yu, C. Huh, S.L. Bryant, Enhanced Migration of SurfaceTreated N Nanoparticles in Sedimentary Rocks, Society of Petroleum Engineers, Annual Technical Conference and Exhibition, Orleans, Louisiana, USA, SPE(124418), 2009. [51] M.B. Jacob, J. Yu, W. Lu, E.E. Walsh, L. Zhang, Engineered nanoparticles for hydrocarbon detection in oilfield rocks, J. Int Con Oilfield Chem, Engy Environ. Sci 4(2011) 505-509. [52] S. SadeghHassani, A. Amrollahi, A.M. Rashidi, M. Soleymani, S. Rayatdoost, The effect of nanoparticles on the heat transfer properties of drilling fluids, J. Petroleum Science and Engineering 146(2016) 183-190. [53] D. Domari Ganji, M.M. Peiravi, M. Abbasi, Evaluation of the heat transfer rate increases in retention pools nuclear waste, Int. J. Nano Dimens 6(4) (2015) 385-398. [54] B. Kirubadurai, P. Selvan, V. Vijayakumar, M. Karthik, Heat transfer enhancement of nano-fluid:A review, Int. J. Res. Eng. Technol 3(7) (2014) 483-486. [55] J.K.M. Williama, S. Ponmani, R. Samuel, R. Nagarajanc, J.S. Sangwai, Effect of CuO and ZnO nanofluids in xanthan gum on thermal, electrical and high pressure rheology of water-based drilling fluids, J. Petro. Sci. Eng 117(2014) 15-27. [56] L.L. Ionscu Vasii, A. Fatseyeu, Electrical conductivity of oil base drilling fluids containing carbon nanotubes, US Pat. 20110111988(2011). [57] M. Sedaghatzadeh, A.A. Khodadadi, M.R. Tahmasebi Birgani, An improvement in thermal and rheological properties of water based drilling fluids using multi wall carbon nanotube (MWCNT), Iran. J. Oil Gas Sci. Technol 1(1) (2012) 55-65. [58] H. Xie, W. Yu, Y. Li, L. Chen, Discussion on the thermal conductivity enhancement of nanofluids, Nanoscale Res. Lett 6(2011) 124. [59] J. Abdo, M.D. Haneef, Clay nano-particles modified drilling fluids for drilling of deep hydrocarbon wells, J. Appl. Clay. Sci 86(2013) 76-82. [60] J. Abdo, M. Haneef, Nano-enhanced drilling fluids:pioneering approach to overcome uncompromising drilling problems, J. Energy. Resour. Technol 134(1) (2012) (014501). [61] R. Saboori, S. Sabbaghi, D. Mowla, A. Soltani, Decreasing of water loss and mud cake thickness by CMC nanoparticles in mud drilling, Int. J. Nano. Dimens. 3(2) (2012) 101-104. [62] J. Nasser, A. Jesil, T. Mohiuddin, M. Al-Ruqeshi, G. Devi, Experimental investigation of drilling fluid performance as nanoparticles, World J. Nano Science and Engineering 3(3) (2013) 57-61. [63] Y.H. Chai, S. Yusup, W. Soon Chok, A review on nanoparticle addition in base fluid for improvement of biodegradable ester-based drilling fluid properties, J. Chem Eng Trans 45(2015) 1447-1452. [64] K.Q. Ma, J. Liu, Nano liquid-metal fluid as ultimate coolant, J. Phys. Lett. A. 361(3) (2007) 252-256. [65] D. Ashtiani, M.A. Akhavan-Behabadi, M. Fakoor Pakdaman, An experimental investigation on heat transfer characteristics of multi-walled CNT-heat transfer oil nanofluid flow inside flattened tubes under uniform wall temperature condition, Int. Commun. Heat Mass. Transf 39(2012) 1404-1409. [66] J.B. Crews, T. Huang, Use of nano-sized phyllosilicate minerals in viscoelastic surfactant fluids, US Pat. 9145510(2011) B2. [67] J.B. Crews, T. Huang, Use of Nano-sized Clay Minerals in Viscoelastic Surfactant Fluids, US Pat. 20080300153(2008) A1. [68] B. Peng, L. Zhang, J. Luo, P. Wang, B. Ding, M. Zeng, Zhengdong. Cheng, A review of nanomaterials for nanofluid enhanced oil recovery, J. RSC. Adv 7(2017) 32246. [69] L. Hendraningrat, O. Torsæter, Metal oxide-based nanoparticles:Revealing their potential to enhance oil recovery in different wettability systems, Appl. Nanosci 5(2) (2015) 181-199. [70] X. Sun, Y. Zhang, G. Chen, Zh. Gai, Application of nanoparticles in enhanced oil recovery:A critical review of recent progress, J. Energies 10(3) (2017) 345. [71] A. Bera, H. Belhaj, Application of nanotechnology by means of nanoparticles and nanodispersions in oil recovery-A comprehensive review, J. Natural Gas Science and Engineering 34(2016) 1284-1309. |