[1] D.H. Cho, Y.G. Kim, J.S. Chung, Catalytic fluorination of 1,1,1-trifluoro-2-chloroethane (HCFC-133a) over chromium catalysts, Catal. Lett. 53(3-4) (1998) 199-203. [2] L.E. Manzer, An overview of the commercial development of chlorofluorocarbon (CFC) alternatives, Catal. Today 13(1) (1992) 13-22. [3] D. H. Eisenlohr, R. D. Shelton. Dehydrochlorination of tetrachloroethane, U.S. Pat. 2898383. 1959-8-4. [4] K. Mackenzie, J. Battke, F.D. Kopinke, Catalytic effects of activated carbon on hydrolysis reactions of chlorinated organic compounds, Catal. Today 102-103(2005) 148-153. [5] K. Mackenzie, J. Battke, R. Koehler, F.D. Kopinke, Catalytic effects of activated carbon on hydrolysis reactions of chlorinated organic compounds, Appl. Catal. B-Environ. 59(3-4) (2005) 171-179. [6] X. Li, W. Chen, C. Zhang, Y. Li, F. Wang, W. Chen, Enhanced dehydrochlorination of 1,1,2,2-tetrachloroethane by graphene-based nanomaterials, Environ. Pollut. 214(2016) 341-348. [7] W. Chen, J. Ni, Dehydrochlorination of adsorbed 1, 1, 2, 2-tetrachloroethane on graphene oxide-based materials' surface:Comparison with dissolved form in aqueous environment, J. Hazard. Mater. 324(2017) 321-328. [8] W. Chen, D. Zhu, S. Zheng, W. Chen, Catalytic effects of functionalized carbon nanotubes on dehydrochlorination of 1, 1, 2, 2-tetrachloroethane, Environ. Sci. Technol. 48(7) (2014) 3856-3863. [9] X. Li, T. Li, T. Zhang, C. Gu, S. Zheng, H. Zhang, W. Chen, Nano-TiO2-catalyzed dehydrochlorination of 1, 1, 2, 2-tetrachloroethane:Roles of crystalline phase and exposed facets, Environ. Sci. Technol. 52(7) (2018) 4031-4039. [10] R.D. Rogers, G.A. Voth, Ionic liquids, Acc. Chem. Res. 40(11) (2007) 1077-1078. [11] S. Zhang, J. Zhang, Y. Zhang, Y. Deng, Nanoconfined ionic liquids, Chem. Rev. 117(10) (2017) 6755-6833. [12] P. Walden, Molecular weights and electrical conductivity of several fused salts, Bull. Acad. Imper. Sci. (St. Petersburg) 8(1914) 405-422. [13] R.D. Rogers, K.R. Seddon, Chemistry. Ionic liquids-solvents of the future? Science 302(5646) (2003) 792-793. [14] M.J. Earle, K.R. Seddon, Ionic liquids:Green solvents for the future, Clean Solvents. 819(2002) 10-25. [15] K. Dong, X. Liu, H. Dong, X. Zhang, S. Zhang, Multiscale studies on ionic liquids, Chem. Rev. 117(10) (2017) 6636-6695. [16] M. Freemantle, Designer solvents-ionic liquids may boost clean technology development, Chem. Eng. News 76(13) (1998) 32-37. [17] D. Glas, J. Hulsbosch, P. Dubois, K. Binnemans, D.E. De Vos, End-of-life treatment of poly(vinyl chloride) and chlorinated polyethylene by dehydrochlorination in ionic liquids, ChemSusChem. 7(2) (2014) 610-617. [18] C. Allen, S.V. Sambasivarao, O. Acevedo, An ionic liquid dependent mechanism for base catalyzed beta-elimination reactions from QM/MM simulations, J. Am. Chem. Soc. 135(3) (2013) 1065-1072. [19] M. Stalpaert, F.G. Cirujano, E. De Vos Dirk, Tetrabutylphosphonium bromide catalyzed dehydration of diols to dienes and its application in the biobased production of butadiene, ACS Catal. 7(9) (2017) 5802-5809. [20] T. Zhao, Q. Zhou, X.L. He, S.D. Wei, L. Wang, Johannes M.N. van Kasteren, Y.Z. Wang, A highly efficient approach for dehydrochlorinating polyvinyl chloride:catalysis by 1-butyl-3-methylimidazolium chloride, Green Chem. 12(6) (2010) 1062-1065. [21] T. Boudewijns, M. Piccinini, P. Degraeve, A. Liebens, D. De Vos, Pathway to vinyl chloride production via dehydrochlorination of 1, 2-dichloroethane in ionic liquid media, ACS Catal. 5(7) (2015) 4043-4047. [22] H.P. Steinrück, P. Wasserscheid, Ionic liquids in catalysis, Catal. Lett. 145(1) (2014) 380-397. [23] P.Z. Zhang, Z.B. Jiang, Y.H. Cui, Y.Z. Jin, G.Q. Xie, L.L. Guo, Y.Q. Xu, Q.F. Zhang, X.N. Li, Catalytic performance of ionic liquid for Dehydrochlorination reaction:Excellent activity and unparalled stability, Appl. Catal. B-Environ. 225(2019) 117757. [24] S.X. Chen, R.X. Liu, Y.J. Li, R.R. Zhang, C. Zhao, H.G. Tang, C.Z. Qiao, S.J. Zhang, Relationship of basicity and hydrogen bond properties of ionic liquids with its catalytic performance:Application to synthesis of propylene glycol methyl ether, Catal. Commun. 96(2017) 69-73. [25] Q.W. Yang, D. Xu, J.Z. Zhang, Y.M. Zhu, Z.G. Zhang, C. Qian, Q.L. Ren, H.B. Xing, Longchain fatty acid-based phosphonium ionic liquids with strong hydrogen-bond basicity and good lipophilicity:Synthesis, characterization, and application in extraction, ACS Sustain. Chem. Eng. 3(2) (2014) 309-316. [26] D. Xu, Q. Yang, B. Su, Z. Bao, Q. Ren, H. Xing, Enhancing the basicity of ionic liquids by tuning the cation-anion interaction strength and via the anion-tethered strategy, J. Phys. Chem. B. 118(4) (2014) 1071-1079. [27] Q.W. Yang, D. Xu, J.Z. Zhang, Y.M. Zhu, Z.G. Zhang, C. Qian, Q.L. Ren, H.B. Xing,. Longchain fatty acid-based. phosphonium ionic liquids with strong hydrogen-bond basicity and good lipophilicity:Synthesis, characterization, and application in extraction, ACS Sustain. Chem. Eng. 3(2) (2015) 309-316. https://doi.org/10.1021/sc5006796. [28] H.H. Willard, L.R. Perkins, F.F. Blicke, Tetraphenylphosphonium and tetraphenylstibonium chloride, J. Am. Chem. Soc. 70(2) (1948) 737-738. [29] M. Haumann, A. Schönweiz, H. Breitzke, G. Buntkowsky, S. Werner, N. Szesni, Solidstate nmr investigations of supported ionic liquid phase water-gas shift catalysts:Ionic liquid film distribution vs, Catalyst performance. Chem. Eng. Technol. 35(8) (2012) 1421-1426. [30] National Institute of Advanced Industrial Science and Technology (Japan), AIST:Integrated Spectral Database System of Organic Compounds. http://aist.go.jp/,2019(accessed 04 July 2019). [31] D. Weber, S.H. Hausner, A. Eisengräber-Pabst, S. Yun, J.A. Krause-Bauer, H. Zimmer, Unexpected differences in reactivity between tin and lead organyl chlorides-crystal structures of their organylphosphonium salts, Inorg. Chim. Acta. 357(1) (2004) 125-134. [32] G. Miyajima, K. Takahashi, Carbon-13 nuclear magnetic resonance spectroscopy. III. Chloro-substituted ethanes and ethylenes, J. Phys. Chem. 75(3) (1971) 331-334. [33] H. Florian, K. Christoph, T. Johannes, J.T. Andreas, Phenomena, evaporation, thermal stability of supported ionic liquids, in:F. Rasmus, R. Anders, H. Marco (Eds.), Supported Ionic Liquids. Fundamentals and Applications, John Wiley and Sons Ltd., New Jersey 2014, pp. 105-143. |