[1] J. Goldemberg, Ethanol for a sustainable energy future, Science 315(2007) 808-810. [2] M. Balat, H. Balat, Recent trends in global production and utilization of bio-ethanol fuel, Appl. Energy 86(2009) 2273-2282. [3] A. Rattanapan, S. Limtong, M. Phisalaphong, Ethanol production by repeated batch and continuous fermentations of blackstrap molasses using immobilized yeast cells on thin-shell silk cocoons, Appl. Energy 88(2011) 4400-4404. [4] M. Usman, D. Li, R. Razzap, M. Yaseen, C. Li, S. Zhang, Novel MoP/HY catalyst for the selective conversion of naphthalene to tetralin, J. Ind. Eng. Chem. 23(2015) 21-26. [5] M. Yaseen, Y. Lu, C. Shen, C. Li, Dibenzothiophene hydrodesulfurization over Ru promoted alumina based catalysts using in situ generated hydrogen, Energ, Convers. Manage. 52(2011) 1364-1370. [6] M. Yaseen, C. Li, Dibenzothiophene hydrodesulfurizaiton using in situ generated hydrogen over Pd promoted alumina-based catalysts, Fuel Process. Technol. 92(2011) 624-630. [7] S. Wang, W. Guo, H. Wang, L. Zhu, S. Yin, K. Qiu, Effect of the Cu/SBA-15 catalyst preparation method on methyl acetate hydrogenation for ethanol production, New J. Chem. 38(2014) 2792-2800. [8] D.S. Brands, E.K. Poels, A. Bliek, Ester hydrogenolysis over promoted Cu/SiO2 catalysts, Appl. Catal. A, Gen. 184(1999) 279-289. [9] Y. Wang, Y. Shen, Y. Zhao, J. Lv, S. Wang, X. Ma, Insight into the balancing effect of active cu species for hydrogenation of carbon-oxygen bonds, ACS Catal. 5(2015) 6200-6208. [10] L.R. Zehner, R.W. Lenton, Process for the preparation of ethylene glycol, US Pat., 4112245, 1978. [11] F. Poppelsdorf, Process for the preparation of ethylene glycol, EP. Pat., 0060787, 1982. [12] S. Tahara, K. Fujii, K. Nishihira, M. Matsuda, K. Mizutare, Process for continuously preparing ethylene glycol, US Pat., 4453026, 1984. [13] K. Hirai, T. Uda, Y. Nakamura, Catalyst composition for producing ethylene glycol and process for producing the catalyst composition, US Pat., 4614728, 1986. [14] H. Miyazaki, T. Uda, K. Hirai, Y. Nakamura, H. Ikezawa, T. Tsuchie, Process for producing ethylene glycol and/or glycolic acid ester, catalyst composition used therefor, and process for production thereof, US Pat., 4585890, 1986. [15] Y. Choia, K. Futagamia, T. Fujitani, J. Nakamura, The role of ZnO in Cu/ZnO methanol synthesis catalysts-Morphology effect or active site model, Appl. Catal. A, Gen. 208(2001) 163-167. [16] X. Wang, K. Ma, L. Guo, T. Ye, Q. Cheng, X. Bai, J. Huang, T. Ding, X. Li, Cu/ZnO/SiO2 catalyst synthesized by reduction of ZnO-modified copper phyllosilicate for dimethyl ether steam reforming, Appl. Catal. A, Gen. 540(2017) 37-46. [17] Y. Zhao, B. Shan, Y. Wang, J. Zhou, S. Wang, X. Ma, An effective CuZn-SiO2 bimetallic catalyst prepared by hydrolysis precipitation method for the hydrogenation of methyl acetate to ethanol, Ind. Eng. Chem. Res. 57(2018) 4526-4534. [18] H. Liu, Z. Huang, H. Kang, X. Li, C. Xia, J. Chen, H. Liu, Efficient bimetallic NiCu-SiO2 catalysts for selective hydrogenolysis of xylitol to ethylene glycol and propylene glycol, Appl. Catal. B 220(2018) 251-263. [19] C. Ye, C. Guo, J. Zhang, Highly active and stable CeO2-SiO2 supported Cu catalysts for the hydrogenation of methyl acetate to ethanol, Fuel Processing Technol. 143(2016) 219-224. [20] Li H., Zhang Y., Zhang H., Qin X., Xu Y., Wu R., Jiang Z., Zhao Y. The nature of the deactivation of hydrothermally stable Ni/SiO2-Al2O3 catalyst in long-time aqueous phase hydrogenation of crude 1,4-butanediol, Chin.J.Chem.Eng, 27(12)(2019)2960-2967. [21] Z. He, H. Lin, P. He, Y. Yuan, Effect of boric oxide doping on the stability and activity of a Cu-SiO2 catalyst for vapor-phase hydrogenation of dimethyl oxalate to ethylene glycol, J. Catal. 277(2011) 54-63. [22] X. Zheng, H. Lin, J. Zheng, X. Duan, Y. Yuan, Lanthanum oxide-modified Cu/SiO2 as a high-performance catalyst for chemoselective hydrogenation of dimethyl oxalate to ethylene glycol, ACS Catal. 3(2013) 2738-2749. [23] Y. Huang, H. Ariga, X. Zheng, X. Duan, S. Takakusagi, K. Asakura, Y. Yuan, Silvermodulated SiO2-supported copper catalysts for selective hydrogenation of dimethyl oxalate to ethylene glycol, J. Catal. 307(2013) 74-83. [24] Y. Wang, X. Duan, J. Zheng, H. Lin, Y. Yuan, H. Ariga, S. Takakusagi, K. Asakura, Remarkable enhancement of Cu catalyst activity in hydrogenation of dimethyl oxalate to ethylene glycol using gold, Catal. Sci. Technol. 2(2012) 1637-1639. [25] M. Yaseen, H.U. Rashid, S. Subhan, A.U. Rahman, M. Sahibzada, Z. Tong, Boosting the hydrodesulfurization of dibenzothiophene efficiency of Mn decorated (Co/Ni)-Mo/Al2O3 catalysts at mild temperature and pressure by coupling with phosphonium based ionic liquids, Chem. Eng. J. 375(2019) 121957-121968. [26] F. Dai, M. Yaseen, X. Gong, C. Li, Z. Li, S. Zhang, Low-temperature and low-pressure fuel hydrodesulfurization by solid catalyst coupling with ionic liquids, Fuel 134(2014) 74-80. [27] M. Yaseen, M. Shakirullah, I. Ahmad, A.U. Rahman, F.U. Rahman, M. Usman, R. Razzaq, Simultaneous operation of dibenzothiophene hydrodesulfurization and methanol reforming reactions over Pd promoted alumina based catalysts, J. Fuel Chem. Technol. 40(2012) 714-720. [28] M. Yaseen, A.U. Rahman, H.U. Rahid, M. Sahibzada, S. Subhan, Z. Tong, Hydrodesulfurizaiton of dibenzothiophene using Pd-promoted Co-Mo/Al2O3 and Ni-Mo/Al2O3 catalysts coupled with ionic liquids at ambient operating conditions, RSC Adv. 9(2019) 10371-10385. [29] J. Zhou, L. Guo, X. Guo, J. Mao, S. Zhang, Selective hydrogenolysis of glycerol to propanediols on supported Cu-containing bimetallic catalysts, Green Chem. 12(2010) 1835-1843. [30] L. Zhang, J. Mao, S. Li, J. Yin, X. Sun, X. Guo, C. Song, J. Zhou, Hydrogenation of levulinic acid into gamma-valerolactone over in situ reduced CuAg bimetallic catalyst:Strategy and mechanism of preventing Cu leaching, Appl. Catal. B 232(2018) 1-10. [31] Z. Wang, Z. Xu, S. Peng, M. Zhang, G. Lu, Q. Chen, Y. Chen, G. Guo, High-performance and long-lived cu/SiO2 Nanocatalyst for CO2 hydrogenation, ACS Catal. 5(2015) 4255-4259. [32] Z. Wang, Z. Xu, M. Zhang, Q. Chen, Y. Chen, G. Guo, Insight into composition evolution in the synthesis of high-performance Cu/SiO2 catalysts for CO2 hydrogenation, RSC Adv. 6(2016) 25185-25190. [33] T. Toupance, M. Kermarec, J.F. Lambert, C. Louis, Conditions of formation of copper phyllosilicates in silica-supported copper catalysts prepared by selective adsorption, J. Phys. Chem. B 106(2002) 2277-2286. [34] J.J.F. Scholten, J.A. Konvalinka, F.W. Beekman, Reaction of nitrous oxide and oxygen with silver surfaces and application to the determination of free-silver surface areas of catalysts, J. Catal. 28(1973) 209-220. [35] L. Chen, P. Guo, M. Qiao, Y. Run, H. Li, W. Shen, H. Xu, K. Fan, Cu/SiO2 catalysts prepared by the ammonia-evaporation method:Texture, structure, and catalytic performance in hydrogenation of dimethyl oxalate to ethylene glycol, J. Catal. 257(2008) 172-180. [36] X. Dong, X. Ma, H. Xu, Q. Ge, Comparative study of silica-supported copper catalysts prepared by different methods:Formation and transition of copper phyllosilicate, Catal. Sci. Technol. 6(2016) 4151-4158. [37] Y. Zhao, S. Li, Y. Wang, B. Shan, J. Zhang, S. Wang, X. Ma, Efficient tuning of surface copper species of Cu/SiO2 catalyst for hydrogenation of dimethyl oxalate to ethylene glycol, Chem. Eng. J. 313(2017) 759-768. [38] T. Toupance, M. Kermarec, C. Louis, Metal particle size in silica-supported copper catalysts:Influence of the conditions of preparation and of thermal pretreatments, J. Phys. Chem. B 104(2000) 965-972. [39] C.J.G. Van Der Grift, A.F.H. Wielers, B.P.J. Jogh, J. Van Beumun, M. De Boer, M. Versluijs-Helder, J.W. Geus, Effect of the reduction treatment on the structure and reactivity of silica-supported copper particles, J. Catal. 131(1991) 178-189. [40] A.J. Marchi, J.L.G. Fierro, J. Santamaría, A. Monzon, Dehydrogenation of isopropylic alcohol on a Cu/SiO2 catalyst:a study of the activity evolution and reactivation of the catalyst, Appl. Catal. A 142(1996) 375-386. [41] C.J.G. Van Der Grift, A. Wielere, A. Mulder, J.W. Geus, The reduction behavior of silica-supported copper catalysts prepared by deposition precipitation, Thermochim. Acta 171(1990) 95-113. [42] X. Xi, S. Ma, J. Chen, Y. Zhang, Promotional effects of Ce, Mn and Fe oxides on CuO/SiO2 catalysts for CO oxidation, J. Environ. Chem. Eng. 2(2014) 1011-1017. [43] X. Dong, H. Hang, G. In, Y. Yuan, K.R. Tsai, Highly active CNT-promotedCu-ZnO-Al2O3 catalyst for methanol synthesis from H2/CO/CO2, Catal. Lett. 85(2003) 237-246. [44] J. Gong, H. Yue, Y. Zhao, S. Zhao, L. Zhao, J. Lv, S. Wang, X. Ma, Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0-Cu+ sites, J. Am. Chem. Soc. 134(2012) 13922-13925. [45] F. Rochet, G. Dufour, H. Roulet, N. Motta, A. Sgarlata, M.N. Piancastelli, M.D. Crescenzi, Copper phthalocyanine on Si(111)-7×7 and Si(001)-2×1:an XPS/AES and STM study, Surf. Sci. 319(1994) 10-20. [46] H. Liu, Z. Huang, Z. Han, K. Ding, H. Liu, C. Xia, J. Chen, Efficient production of methanol and diols via the hydrogenation of cyclic carbonates using copper-silica nanocomposite catalysts, Green Chem. 17(2015) 4281-4290. [47] J. Ding, T. Popa, J. Tang, A.M. Khaled, M. Gasem, Q. Zhong Fan, Highly selective and stable Cu/SiO2 catalysts prepared with a green method for hydrogenation of diethyl oxalate into ethylene glycol, Appl. Catal. B 209(2017) 530-542. [48] M.G. Méndezmedrano, E. Kowalska, A. Lehoux, A. Herissan, B. Ohtani, D. Bahena, V. Briois, C. Colbeaujustin, J.L. Rodríguezlópez, H. Remita, Surface modification of TiO2 with Ag nanoparticles and CuO nanoclusters for application in photocatalysis, J. Phys. Chem. C 120(2016) 5143-5154. [49] Y. Liu, J. Ding, J. Yang, J. Bi, K. Liu, J. Chen, Stabilization of copper catalysts for hydrogenation of dimethyl oxalate by deposition of Ag clusters on Cu nanoparticles, Catal. Commun. 98(2017) 43-46. [50] H. Zhou, W. Zhu, L. Shi, H. Liu, S. Liu, Y. Ni, Y. Liu, Y. He, S. Xu, L. Li, Z. Liu, In situ DRIFT study of dimethyl ether carbonylation to methyl acetate on H-Mordenite, J. Mol. Catal. A 417(2016) 1-9. [51] E. Kukulska-Zajac, K. Gora-Marek, J. Datka, IR and TPD studies of the reaction of acetic acid in zeolites NaHY, Micropor. Mesopor. Mat. 96(2006) 216-221. [52] C. Wen, Y. Cui, W. Dai, S. Xie, K. Fan, Solvent feedstock effect:the insights into the deactivation mechanism of Cu/SiO2 catalysts for hydrogenation of dimethyl oxalate to ethylene glycol, Chem. Commun. 49(2013) 5195-5197. [53] H. Chen, J. Tan, J. Cui, X. Yang, H. Zheng, Y. Zhu, Y. Li, Promoting effect of boron oxide on Ag/SiO2 catalyst for the hydrogenation of dimethyl oxalate to methyl glycolate, Molecular Catalysis 433(2017) 346-353. |