中国化学工程学报 ›› 2020, Vol. 28 ›› Issue (11): 2837-2847.DOI: 10.1016/j.cjche.2020.05.035
• Special Topic: Biocatalysis • 上一篇 下一篇
Qianqian Hou, Nanxing Li, Yuanyuan Chao, Shihao Li, Lin Zhang
收稿日期:
2020-02-28
修回日期:
2020-05-28
出版日期:
2020-11-28
发布日期:
2020-12-31
通讯作者:
Lin Zhang
基金资助:
Qianqian Hou, Nanxing Li, Yuanyuan Chao, Shihao Li, Lin Zhang
Received:
2020-02-28
Revised:
2020-05-28
Online:
2020-11-28
Published:
2020-12-31
Contact:
Lin Zhang
Supported by:
摘要: Surface and interfacial behavior of protein molecules are crucial for the protein function involved in many biochemical processes and biomedical products such as enzyme design, bio-separation, drug design and delivery. This article is devoted to an overview of design and regulation of the surface and interfacial behavior of protein molecules. The improvement of enzyme surface such as the directed evolution and the rational design of enzymes is introduced at first, followed by the rational design of protein interface for the protein assembly. Thereafter, the design of micro-environment and ligands are described as two examples for the design guided by protein surface. Then the design of protein surface and interface with the help of artificial intelligence will be discussed.
Qianqian Hou, Nanxing Li, Yuanyuan Chao, Shihao Li, Lin Zhang. Design and regulation of the surface and interfacial behavior of protein molecules[J]. 中国化学工程学报, 2020, 28(11): 2837-2847.
Qianqian Hou, Nanxing Li, Yuanyuan Chao, Shihao Li, Lin Zhang. Design and regulation of the surface and interfacial behavior of protein molecules[J]. Chinese Journal of Chemical Engineering, 2020, 28(11): 2837-2847.
[1] N. Zhu, D. Zhang, D. Wang, W. Wang, X. Li, B. Yang, J. Song, X. Zhao, B. Huang, W. Shi, R. Lu, P. Niu, F. Zhan, A novel coronavirus from patients with pneumonia in China, 2019, N. Engl. J. Med. 382(2020) 727-733. [2] S. Jiang, L. Du, Z. Shi, An emerging coronavirus causing pneumonia outbreak in Wuhan, China:calling for developing therapeutic and prophylactic strategies, Emerging Microbes Infect. 9(2020) 275-277. [3] B. Li, H. Si, Y. Zhu, X. Yang, D.E. Anderson, Z. Shi, L. Wang, P. Zhou, Discovery of bat coronaviruses through surveillance and probe capture-based next-generation sequencing, mSphere 5(2020) e120-e170. [4] M. Wang, R. Cao, L. Zhang, X. Yang, J. Liu, M. Xu, Z. Shi, Z. Hu, W. Zhong, G. Xiao, Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro, Cell Res. 30(2020) 269-271. [5] W. Daniel, W. Nianshuang, S.C. Kizzmekia, J.A. Goldsmith, H. Ching-Lin, A. Olubukola, B. Graham, J. McLellan, Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation, Science 367(2020) 1260. [6] W.J. Guan, Z.Y. Ni, Y. Hu, W.H. Liang, C.Q. Ou, J. He, et al., Clinical Characteristics of 2019 Novel Coronavirus Infection in China, N. Engl. J. Med. (2020)https://www.medrxiv.org/content/10.1101/2020.02.06.20020974v1. [7] C. Soto, S. Pritzkow, Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases, Nat. Neurosci. 21(2018) 1332-1340. [8] C. Scheckel, A. Aguzzi, Prions, prionoids and protein misfolding disorders, Nat. Rev. Genet. 19(2018) 405-418. [9] A. Mullard, 2013 FDA drug approvals, Nat. Rev. Drug Discov. 13(2014) 85-89. [10] Y. Li, X. Liu, X. Dong, L. Zhang, Y. Sun, Biomimetic design of affinity peptide ligand for capsomere of virus-like particle, Langmuir 30(2014) 8500-8508. [11] C.C.C.R. de Carvalho, Enzymatic and whole cell catalysis:Finding new strategies for old processes, Biotechnol. Adv. 29(2011) 75-83. [12] L. Zhang, D. Lu, Z. Liu, How native proteins aggregate in solution:A dynamic Monte Carlo simulation, Biophys. Chem. 133(2008) 71-80. [13] L. Yu, L. Zhang, Y. Sun, Protein behavior at surfaces:Orientation, conformational transitions and transport, J. Chromatogr. A 1382(2015) 118-134. [14] J.B. Bale, S. Gonen, Y. Liu, W. Sheffler, D. Ellis, Accurate design of megadaltonscale two-component icosahedral protein complexes, Science 353(2016) 389-394. [15] J.H. Mills, W. Sheffler, M.E. Ener, P.J. Almhjell, G. Oberdorfer, J.H. Pereira, F. Parmeggiani, B. Sankaran, P.H. Zwart, D. Baker, Computational design of a homotrimeric metalloprotein with a trisbipyridyl core, Proc. Natl. Acad. Sci. 113(2016) 15012-15017. [16] L. Zhang, L.H.L. Lua, A.P.J. Middelberg, Y. Sun, N.K. Connors, Biomolecular engineering of virus-like particles aided by computational chemistry methods, Chem. Soc. Rev. 44(2015) 8608-8618. [17] K. Steiner, H. Schwab, Recent advances in rational approaches for enzyme engineering, Comput. Struct. Biotechnol. J. 2(2012), e201209010. [18] K. Chen, F.H. Arnold, Tuning the Activity of an Enzyme for Unusual Environments:Sequential Random Mutagenesis of Subtilisin E for Catalysis in Dimethylformamide, Proc. Natl. Acad. Sci. U. S. A. 90(1993) 5618-5622. [19] P.C. Willem, Stemmer, Rapid evolution of a protein in vitro by DNA shuffling, Nature 370(1994) 389-391. [20] Y. Tian, J. Xu, R. Peng, A. Xiong, H. Xu, W. Zhao, X. Fu, H. Han, Q. Yao, Mutation by DNA shuffling of 5-enolpyruvylshikimate-3-phosphate synthase fromMalus domestica for improved glyphosate resistance, Plant Biotechnol. J. 11(2013) 829-838. [21] X. Wang, Q. Li, T. Bao, W. Cong, W. Song, X. Zhou, In vitro rapid evolution of fungal immunomodulatory proteins by DNA family shuffling, Appl. Microbiol. Biotechnol. 97(2013) 2455-2465. [22] J.A. Wells, M. Vasser, D.B. Powers, Cassette mutagenesis:an efficient method for generation of multiple mutations at defined sites, Gene 34(1985) 315-323. [23] A.V. Shivange, A. Dennig, U. Schwaneberg, Multi-site saturation by OmniChange yields a pH- and thermally improved phytase, J. Biotechnol. 170(2014) 68-72. [24] T.S. Wong, Sequence saturation mutagenesis (SeSaM):a novel method for directed evolution, Nucleic Acids Res. 32(2004) 26e-26. [25] Y. Zhang, Y. Wu, N. Xu, Q. Zhao, H. Yu, J. Xu, Engineering of Cyclohexanone Monooxygenase for the Enantioselective Synthesis of (S)-Omeprazole, ACS Sustain. Chem. Eng. 7(2019) 7218-7226. [26] Y. Qi, F. Li, Q. Chen, Z. Zhang, Z. Luan, J. Xu, H. Yu, Protein termini relocation plus random mutation:A new strategy for finding key sites in esterase evolution, Mol. Catal. 460(2018) 94-99. [27] X. Gong, Z. Qin, F. Li, B. Zeng, G. Zheng, J. Xu, Development of an Engineered Ketoreductase with Simultaneously Improved Thermostability and Activity for Making a Bulky Atorvastatin Precursor, ACS Catal. 9(2018) 147-153. [28] C. Tang, H. Shi, Z. Jiao, H. Shi, L. Yao, J. Xu, Y. Kan, Exploitation of cold-active cephalosporin C acylase by computer-aided directed evolution and its potential application in low-temperature biosynthesis of 7-aminocephalosporanic acid, J. Chem. Technol. Biotechnol. 93(2018) 2925-2930. [29] X. Jiao, J. Pan, X. Kong, J. Xu, Protein engineering of aldolase LbDERA for enhanced activity toward real substrates with a high-throughput screening method coupled with an aldehyde dehydrogenase, Biochem. Biophys. Res. Commun. 482(2017) 159-163. [30] M. Zheng, K. Chen, R. Wang, H. Li, C. Li, J. Xu, Engineering 7β-Hydroxysteroid Dehydrogenase for Enhanced Ursodeoxycholic Acid Production by Multiobjective Directed Evolution, J. Agric. Food Chem. 65(2017) 1178-1185. [31] X. Luo, J. Zhao, C. Li, Y. Bai, M.T. Reetz, H. Yu, J. Xu, Combinatorial evolution of phosphotriesterase toward a robust malathion degrader by hierarchical iteration mutagenesis, Biotechnol. Bioeng. 113(2016) 2350-2357. [32] L. Huang, J. Xu, H. Yu, Significantly improved thermostability of a reductase CgKR1 from Candida glabrata with a key mutation at Asp 138 for enhancing bioreduction of aromatic α-keto esters, J. Biotechnol. 203(2015) 54-61. [33] B. Ma, X. Kong, H. Yu, Z. Zhang, S. Dou, Y. Xu, Y. Ni, J. Xu, Increased Catalyst Productivity in α-Hydroxy Acids Resolution by Esterase Mutation and Substrate Modification, ACS Catal. 4(2014) 1026-1031. [34] Z. Xu, Y. Tian, Y. Zhu, Computational design of thermostable mutants for cephalosporin C acylase from Pseudomonas strain SE83, Comput. Chem. Eng. 116(2018) 112-121. [35] J. He, X. Huang, J. Xue, Y. Zhu, Computational redesign of penicillin acylase for cephradine synthesis with high kinetic selectivity, Green Chem. 20(2018) 5484-5490. [36] Y. Tian, Z. Xu, X. Huang, Y. Zhu, Computational design to improve catalytic activity of cephalosporin C acylase from Pseudomonas strain N176, RSC Adv. 7(2017) 30370-30375. [37] Y. Tian, X. Huang, Q. Li, Y. Zhu, Computational design of variants for cephalosporin C acylase from Pseudomonas strain N176 with improved stability and activity, Appl. Microbiol. Biotechnol. 101(2017) 621-632. [38] X. Huang, J. Xue, M. Lin, Y. Zhu, Use of an Improved Matching Algorithm to Select Scaffolds for Enzyme Design Based on a Complex Active Site Model, PLoS ONE 11(2016), e0156559.. [39] Q. Mu, Y. Cui, Y. Tian, M. Hu, Y. Tao, B. Wu, Thermostability improvement of the glucose oxidase from Aspergillus niger for efficient gluconic acid production via computational design, Int. J. Biol. Macromol. 136(2019) 1060-1068. [40] Y. Bu, Y. Cui, Y. Peng, M. Hu, Y.E. Tian, Y. Tao, B. Wu, Engineering improved thermostability of the GH11 xylanase from Neocallimastix patriciarum via computational library design, Appl. Microbiol. Biotechnol. 102(2018) 3675-3685. [41] X. Kong, Q. Ma, J. Zhou, B. Zeng, J. Xu, A Smart Library of Epoxide Hydrolase Variants and the Top Hits for Synthesis of (S)-β-Blocker Precursors, Angew. Chem. Int. Ed. 53(2014) 6641-6644. [42] L. Huang, H. Ma, H. Yu, J. Xu, Altering the Substrate Specificity of ReductaseCg KR1 fromCandida glabrataby Protein Engineering for Bioreduction of Aromatic α-Keto Esters, Adv. Synth. Catal. 356(2014) 1943-1948. [43] B. Wu, W. Szymański, H.J. Wijma, C.G. Crismaru, S. de Wildeman, G.J. Poelarends, et al., Engineering of an enantioselective tyrosine aminomutase by mutation of a single active site residue in phenylalanine aminomutase, Chem. Commun. 46(2010) 8157(Cambridge, U. K.). [44] F. Guo, S. Franzen, L. Ye, J. Gu, H. Yu, Controlling enantioselectivity of esterase in asymmetric hydrolysis of aryl prochiral diesters by introducing aromatic interactions, Biotechnol. Bioeng. 111(2014) 1729-1739. [45] F. Li, X. Kong, Q. Chen, Y. Zheng, Q. Xu, F. Chen, L. Fan, Q.G. Lin, J. Zhou, H. Yu, J. Xu, Regioselectivity Engineering of Epoxide Hydrolase:Near-Perfect Enantioconvergence through a Single Site Mutation, ACS Catal. 8(2018) 8314-8317. [46] R. Li, A. Li, J. Zhao, Q. Chen, N. Li, H. Yu, J. Xu, Engineering P450LaMO stereospecificity and product selectivity for selective C-H oxidation of tetralin-like alkylbenzenes, Catal. Sci. Technol. 8(2018) 4638-4644. [47] Y. Gong, G. Xu, Q. Chen, J. Yin, C. Li, J. Xu, Iterative multitarget evolution dramatically enhances the enantioselectivity and catalytic efficiency of Bacillus subtilis esterase towards bulky benzoate esters of dl-menthol, Catal. Sci. Technol. 6(2016) 2370-2376. [48] R. Li, H.J. Wijma, L. Song, Y. Cui, M. Otzen, Y.E. Tian, J. Du, T. Li, D. Niu, Y. Chen, J. Feng, J. Han, H. Chen, Y. Tao, D. Janssen, B.B. Wu, Computational redesign of enzymes for regio- and enantioselective hydroamination, Nat. Chem. Biol. 14(2018) 664-670. [49] Y. Bai, Q. Luo, J. Liu, Protein self-assembly via supramolecular strategies, Chem. Soc. Rev. 45(2016) 2756-2767. [50] Y.P. Chuan, Y.Y. Fan, L.H.L. Lua, A.P.J. Middelberg, Virus assembly occurs following a pH- or Ca2+-triggered switch in the thermodynamic attraction between structural protein capsomeres, J. R. Soc. Interface 7(2009) 409-421. [51] L. Zhang, R. Tang, S. Bai, N.K. Connors, L.H.L. Lua, Y.P. Chuan, A. Middelberg, Y. Sun, Molecular energetics in the capsomere of virus-like particle revealed by molecular dynamics simulations, J. Phys. Chem. B 117(2013) 5411-5421. [52] L. Zhang, R. Tang, S. Bai, N.K. Connors, L.H.L. Lua, Y.P. Chuan, A. Middelberg, Y. Sun, Energetic changes caused by antigenic module insertion in a virus-like particle revealed by experiment and molecular dynamics simulations, PLoS One 9(2014), e107313.. [53] L. Zhang, H. Chen, Construction and Characteristics of Charge Modified-Hepatitis B Virus Core Protein Virus-Like Particles, J. Tianjin University (Science and Technology). 53(2020) 450-458. [54] S. Gonen, F. DiMaio, T. Gonen, D. Baker, Design of ordered two-dimensional arrays mediated by noncovalent protein-protein interfaces, Science (New York, N.Y.) 348(2015) 1365-1368. [55] N.P. King, J.B. Bale, W. Sheffler, D.E. McNamara, S. Gonen, T. Gonen, T. Yeates, D. Baker, Accurate design of co-assembling multi-component protein nanomaterials, Nature 510(2014) 103-108. [56] N.P. King, W. Sheffler, M.R. Sawaya, B.S. Vollmar, J.P. Sumida, I. Andre, T. Gonen, T. Yeates, D. Baker, Computational design of self-assembling protein nanomaterials with atomic level accuracy, Science 336(2012) 1171-1174. [57] R. Dong, Y. Zhou, X. Huang, X. Zhu, Y. Lu, J. Shen, Functional supramolecular polymers for biomedical applications, Adv. Mater. 27(2015) 498-526. [58] J. Du, J. Jin, M. Yan, Y. Lu, Synthetic nanocarriers for intracellular protein delivery, Curr. Drug Metab. 13(2012) 82-92. [59] Q. Zhu, M. Yan, L. He, X. Zhu, Y. Lu, D. Yan, Fabrication of porous scaffolds with protein nanogels, Sci. China Chem. 54(2011) 961-967. [60] J.K. Oh, R. Drumright, D.J. Siegwart, K. Matyjaszewski, The development of microgels/nanogels for drug delivery applications, Prog. Polym. Sci. 33(2008) 448-477. [61] J. Ge, D. Lu, J. Wang, M. Yan, Y. Lu, Z. Liu, Molecular fundamentals of enzyme nanogels, The J. Phys. Chem. B. 112(2008) 14319-14324. [62] X. Wu, J. Ge, J. Zhu, Y. Zhang, Y. Yong, Z. Liu, A general method for synthesizing enzyme-polymer conjugates in reverse emulsions using Pluronic as a reactive surfactant, Chem. Commun. 51(2015) 9674-9677. [63] M. Yan, J. Ge, Z. Liu, P. Ouyang, Encapsulation of Single Enzyme in Nanogel with Enhanced Biocatalytic Activity and Stability, J. Am. Chem. Soc. 128(2006) 11008-11009. [64] R. Wang, Y. Zhang, J. Huang, D. Lu, J. Ge, Z. Liu, Substrate imprinted lipase nanogel for one-step synthesis of chloramphenicol palmitate, Green Chem. 15(2013) 1155-1158. [65] M. Lin, D. Lu, J. Zhu, C. Yang, Y. Zhang, Z. Liu, Magnetic enzyme nanogel (MENG):a universal synthetic route for biocatalysts, Chem. Commun. 48(2012) 3315-3317(Camb). [66] J. Ge, D. Lu, J. Wang, Z. Liu, Lipase nanogel catalyzed transesterification in anhydrous dimethyl sulfoxide, Biomacromolecules 10(2009) 1612-1618. [67] M. Yan, Z. Liu, D. Lu, Z. Liu, Fabrication of single carbonic anhydrase nanogel against denaturation and aggregation at high temperature, Biomacromolecules. 8(2007) 560-565. [68] J. Zhang, J. Du, M. Yan, A. Dhaliwal, J. Wen, F. Liu, T. Segura, Y. Lu, Synthesis of protein nano-conjugates for cancer therapy, Nano Res. 4(2011) 425-433. [69] Y. Liu, J. Li, Y. Lu, Enzyme therapeutics for systemic detoxification, Adv. Drug Deliv. Rev. 90(2015) 24-39. [70] M. Yan, J. Du, Z. Gu, M. Liang, Y. Hu, W. Zhang, S. Priceman, L. Wu, Z. Zhou, Z. Liu, T. Segura, Y. Tang, Y. Lu, A novel intracellular protein delivery platform based on single-protein nanocapsules, Nat. Nanotechnol. 5(2010) 48-53. [71] S. Liang, Y. Liu, X. Jin, G. Liu, J. Wen, L. Zhang, J. Li, X. Yuan, I. Chen, W. Chen, H. Wang, L. Shi, X. Zhu, Y. Lu, Phosphorylcholine polymer nanocapsules prolong the circulation time and reduce the immunogenicity of therapeutic proteins, Nano Res. 9(2016) 1022-1031. [72] L. Zhang, Y. Liu, G. Liu, D. Xu, S. Liang, X. Zhu, Y. Lu, H. Wang, Prolonging the plasma circulation of proteins by nano-encapsulation with phosphorylcholine-based polymer, Nano Res. 9(2016) 2424-2432. [73] M. Zhao, D. Xu, D. Wu, J.W. Whittaker, R. Terkeltaub, Y. Lu, Nanocapsules of oxalate oxidase for hyperoxaluria treatment, Nano Res. 11(2018) 2682-2688. [74] D. Xu, H. Han, Y. He, H. Lee, D. Wu, F. Liu, X. Liu, Y. Liu, Y. Lu, C. Ji, A hepatocyte-mimicking antidote for alcohol intoxication, Adv. Mater. 30(2018) 1707443. [75] J. Wen, S.M. Anderson, J. Du, M. Yan, J. Wang, M. Shen, Y. Lu, T. Segura, Controlled protein delivery based on enzyme-responsive nanocapsules, Adv. Mater. 23(2011) 4549-4553. [76] M. Hou, H. Zhao, Y. Feng, J. Ge, Synthesis of patterned enzyme-metal-organic framework composites by ink-jet printing, Bioresources and Bioprocessing 4(2017) 40. [77] X. Wu, J. Ge, C. Yang, M. Hou, Z. Liu, Facile synthesis of multiple enzyme-containing metal-organic frameworks in a biomolecule-friendly environment, Chem. Commun. 51(2015) 13408-13411. [78] C. Hu, Y. Bai, M. Hou, Y. Wang, L. Wang, X. Cao, C. Chan, H. Sun, W. Li, J. Ge, K. Ren, Defect-induced activity enhancement of enzyme-encapsulated metal-organic frameworks revealed in microfluidic gradient mixing synthesis, Sci.Adv. 6(2020), eaax5785. [79] X. Wu, H. Yue, Y. Zhang, X. Gao, X. Li, L. Wang, Y. Cao, M. Hou, H. An, L. Zhang, S. Li, J. Ma, H. Lin, Y. Fu, H. Gu, W. Lou, W. Wei, R. Zare, J. Ge, Packaging and delivering enzymes by amorphous metal-organic frameworks, Nat. Commun. 10(2019) 5165. [80] Y. Cao, X. Li, J. Xiong, L. Wang, L. Yan, J. Ge, Investigating the origin of high efficiency in confined multienzyme catalysis, Nanoscale 11(2019) 22108-22117. [81] X. Wu, C. Yang, J. Ge, Green synthesis of enzyme/metal-organic framework composites with high stability in protein denaturing solvents, Bioresources and Bioprocessing 4(2017) 24. [82] C. Zhang, X. Wang, M. Hou, X. Li, X. Wu, J. Ge, Immobilization on Metal-Organic Framework Engenders High Sensitivity for Enzymatic Electrochemical Detection, ACS Appl. Mater. Interfaces 9(2017) 13831-13836. [83] P. Chulkaivalsucharit, X. Wu, J. Ge, Synthesis of enzyme-embedded metalorganic framework nanocrystals in reverse micelles, RSC Adv. 5(2015) 101293-101296. [84] G.Z. Wang, X.Y. Dong, Y. Sun, Ion-exchange resins greatly facilitate refolding of like-charged proteins at high concentrations, Biotechnol. Bioeng. 108(2011) 1068-1077. [85] L. Yu, X. Dong, Y. Sun, Ion-exchange resins facilitate like-charged protein refolding:Effects of porous solid phase properties, J. Chromatogr. A 1225(2012) 168-173. [86] C. Yang, X. Dong, Y. Sun, Mechanistic studies of protein refolding facilitated by likecharged polymers, React. Funct. Polym. 73(2013) 1405-1411. [87] H. Liu, W. Du, X. Dong, Y. Sun, Integrative refolding and purification of histidinetagged protein by like-charge facilitated refolding and metal-chelate affinity adsorption, J. Chromatogr. A 1344(2014) 59-65. [88] S. Bai, H. Li, L. Zhang, Standing Orientation of Lysozymes Induced by Electrostatically Repulsive Surface, Acta Phys. -Chim. Sin. 29(2013) 849-857. [89] L. Zhang, Y. Sun, Charged surface regulates the molecular interactions of electrostatically repulsive peptides by inducing oriented alignment, Langmuir 34(2018) 4390-4397. [90] A.D. White, A.K. Nowinski, W. Huang, A.J. Keefe, F. Sun, S. Jiang, Decoding nonspecific interactions from nature, Chem. Sci. 3(2012) 3488. [91] S. Chen, Z. Cao, S. Jiang, Ultra-low fouling peptide surfaces derived from natural amino acids, Biomaterials 30(2009) 5892-5896. [92] Q. Shao, S. Jiang, Molecular understanding and design of zwitterionic materials, Adv. Mater. 27(2015) 15-26. [93] X. Lin, P. Jain, K. Wu, D. Hong, H. Hung, M.B.O. Kelly, B.W. Li, P. Zhang, Z.F. Yuan, S.Y. Jiang, Ultralow fouling and functionalizable surface chemistry based on zwitterionic carboxybetaine random copolymers, Langmuir 35(2018) 1544-1551. [94] Y. Chang, S. Chen, Q. Yu, Z. Zhang, M. Bernards, S. Jiang, Development of biocompatible interpenetrating polymer networks containing a sulfobetaine-based polymer and a segmented polyurethane for protein resistance, Biomacromolecules. 8(2007) 122-127. [95] S. Chen, J. Zheng, L. Li, S. Jiang, Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption:Insights into nonfouling properties of zwitterionic materials, J. Am. Chem. Soc. 127(2005) 14473-14478. [96] M. Vergara-Barberán, E.J. Carrasco-Correa, M.J. Lerma-García, E.F. Simó-Alfonso, J. M. Herrero-Martínez, Current trends in affinity-based monoliths in microextraction approaches:A review, Anal. Chim. Acta 1084(2019) 1-20. [97] Y. Fang, D. Lin, S. Yao, Review on biomimetic affinity chromatography with short peptide ligands and its application to protein purification, J. Chromatogr. A 1571(2018) 1-15. [98] W. Zhao, F. Liu, Q. Shi, X. Dong, Y. Sun, Biomimetic design of affinity peptide ligands for human IgG based on protein A-IgG complex, Biochem. Eng. J. 88(2014) 1-11. [99] W. Zhao, Q. Shi, Y. Sun, FYWHCLDE-based affinity chromatography of IgG:Effect of ligand density and purifications of human IgG and monoclonal antibody, J. Chromatogr. A 1355(2014) 107-114. [100] A. Xue, W. Zhao, X.M. Liu, Y. Sun, Affinity chromatography of human IgG with octapeptide ligands identified from eleven peptide-ligand candidates, Biochem. Eng. J. 107(2016) 18-25. [101] C.J. Gerry, S.L. Schreiber, Chemical probes and drug leads from advances in synthetic planning and methodology, Nat. Rev. Drug Discov. 17(2018) 333-352. [102] D.C. Blakemore, L. Castro, I. Churcher, D.C. Rees, A.W. Thomas, D.M. Wilson, A. Wood, Organic synthesis provides opportunities to transform drug discovery, Nat. Chem. 10(2018) 383-394. [103] K.R. Campos, P.J. Coleman, J.C. Alvarez, S.D. Dreher, R.M. Garbaccio, N.K. Terrett, R.D. Tillyer, M.D. Truppo, E.R. Parmee, The importance of synthetic chemistry in the pharmaceutical industry, Science 363(2019), eaat0805.. [104] E. Lionta, G. Spyrou, D.K. Vassilatis, Z. Cournia, Structure-based virtual screening for drug discovery:principles, applications and recent advances, Curr. Top. Med. Chem. 14(2014) 1923. [105] R.A. Copeland, M.R. Harpel, P.J. Tummino, Targeting enzyme inhibitors in drug discovery, Expert Opin. Ther. Targets 11(2007) 967-978. [106] K. Patel, Z.S. Ahmed, X. Huang, Q. Yang, E. Ekinci, C.M. Neslund-Dudas, B. Mitra, F. Elnady, Y.H. Ahn, H.J. Yang, J.B. Liu, Q.P. Dou, Discovering proteasomal deubiquitinating enzyme inhibitors for cancer therapy:lessons from rational design, nature and old drug reposition, Future Med. Chem. 10(2018) 2087-2108. [107] S. Gross, R. Rahal, N. Stransky, C. Lengauer, K.P. Hoeflich, Targeting cancer with kinase inhibitors, J. Clin. Invest. 125(2015) 1780-1789. [108] C.T. Supuran, Advances in structure-based drug discovery of carbonic anhydrase inhibitors, Expert Opin. Drug Discovery 12(2017) 61-88. [109] E.A. Fradinger, B.H. Monien, B. Urbanc, A. Lomakin, M. Tan, H. Li, S.M. Spring, M.M. Condron, L. Cruz, C.W. Xie, G.B. Benedek, G. Bitan, C-terminal peptides coassemble into A 42 oligomers and protect neurons against A 42-induced neurotoxicity, Proc. Natl. Acad. Sci. 105(2008) 14175-14180. [110] F. Liu, W. Du, Y. Sun, J. Zheng, X. Dong, Atomistic characterization of binding modes and affinity of peptide inhibitors to amyloid-β protein, Front. Chem. Sci. Eng. 8(2014) 433-444. [111] N. Xiong, X. Dong, J. Zheng, F. Liu, Y. Sun, Design of LVFFARK and LVFFARK-functionalized nanoparticles for inhibiting amyloid β-protein fibrillation and cytotoxicity, ACS Appl. Mater.Inter. 7(2015) 5650-5662. [112] N. Xiong, Y. Zhao, X. Dong, J. Zheng, Y. Sun, Design of a molecular hybrid of dual peptide inhibitors coupled on AuNPs for enhanced inhibition of amyloid β-protein aggregation and cytotoxicity, Small 13(2017) 1601666. [113] L. Zhang, Y. Sun, Biomimetic design of platelet adhesion inhibitors to block integrin α2β1-collagen interactions:I. construction of an affinity binding model, Langmuir 30(2014) 4725-4733. [114] L. Zhang, C. Zhang, Y. Sun, Biomimetic design of platelet adhesion inhibitors to block integrin α2β1-collagen interactions:Ⅱ. inhibitor library, screening, and experimental validation, Langmuir 30(2014) 4734-4742. [115] L. Zhang, T. Hao, Development of Thrombus Inhibitor LERNSTY Targeted at Collagen, J. Tianjin University (Science and Technology) 51(2018) 401-405. [116] Q. Hou, L. Zhang, Biomimetic design of peptide neutralizer of ebola virus with molecular simulation, Langmuir 36(2020) 1813-1821. [117] G. Yuan, H. Li, B. Fan, Survey on Development of Knowledge Engineering System, Comput. Technol. Autom. 30(2011) 138-143. [118] M.M. Lopez, J. Kalita, Deep Learning applied to NLP, ArXiv (2017)https://arxiv.org/abs/1703.03091. [119] C. Tao, L. Mou, D. Zhao, R. Yan, RUBER:An Unsupervised Method for Automatic Evaluation of Open-Domain Dialog Systems, 2017. [120] H. Li, Overview of the development of artificial intelligence, Sci. Technol. Gansu 36(2007) 17-18. [121] W. Yin, H. Schütze, Task-Specific Attentive Pooling of Phrase Alignments Contributes to Sentence Matching, 1, 2017699-709. [122] Artificial Intelligence Standardization White Paper:China Electronics Standardization Institute. [123] G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly, et al., Deep neural networks for acoustic modeling in speech recognition:The shared views of four research groups, IEEE Signal Proc. Mag. 29(2012) 82-97. [124] A. Kaplan, M. Haenlein, Siri, Siri, in my hand:Who's the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence, Bus. Horizons. 62(2019) 15-25. [125] H.C.S. Chan, H. Shan, T. Dahoun, H. Vogel, S. Yuan, Advancing drug discovery via artificial intelligence, Trends Pharmacol. Sci. 40(2019) 592-604. [126] S. Harrer, P. Shah, B. Antony, J. Hu, Artificial intelligence for clinical trial design, Trends Pharmacol. Sci. 40(2019) 577-591. [127] Y. Cui, C. Shang, S. Chen, J. Hao, Overview of AI:Developments of AI Techniques, Radio Commun. Technol. 45(2019) 225-231. [128] E. Reiter, R. Dale, Building applied natural language generation systems, Comput. Linguist. 27(2000) 298-300. [129] R. Socher, C.C. Lin, A.Y. Ng, C.D. Manning, Parsing Natural Scenes and Natural Language with Recursive Neural Networks, the 28th International Conference on Machine Learning, Bellevue, WA, USA, 2011. [130] A. Kumar, O. Irsoy, P. Ondruska, M. Iyyer, J. Bradbury, I. Gulrajani, V. Zhang, R. Paulus, R. Socher, Ask me anything:dynamic memory networks for natural language processing, 2015. [131] L.P. Kaelbling, M.L. Littman, A.P. Moore, Reinforcement learning asurvey, J. Artif. Intell. Res. 4(1996) 237-285. [132] B. Hidasi, M. Quadrana, A. Karatzoglou, D. Tikk, Parallel recurrent neural network architectures for feature-rich session-based recommendations, ACM, 2016. [133] B. Hidasi, A. Karatzoglou, L. Baltrunas, D. Tikk, Session-based Recommendations with Recurrent Neural Networks, ACM, 2016. [134] M. Quadrana, A. Karatzoglou, B. Hidasi, P. Cremonesi, Personalizing session-based recommendations with hierarchical recurrent neural networks, ACM, 2017. [135] Y.K. Tan, X. Xu, Y. Liu, Improved Recurrent Neural Networks for Session-based Recommendations, Proceedings of the 1st Workshop on Deep Learning for Recommender Systems 2016, pp. 17-22, Boston, MA, USA. [136] R. Szeliski, Computer Vision-Algorithms and Applications, Springer, Berlin, 2010. [137] M.M. Trivedi, T. Gandhi, J. McCall, Looking-In and Looking-Out of a Vehicle:Computer-Vision-Based Enhanced Vehicle Safety, IEEE T Intell. Transp. 8(2007) 108-120. [138] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen, R. Prenger, S. Satheesh, S. Sengupta, A. Coates, A.Y. Ng, DeepSpeech:Scaling up end-to-end speech recognition, Comput. Sci. (2014) 1-12. [139] R. Li, H.J. Wijma, L. Song, Y. Cui, M. Otzen, Y.E. Tian, J.W. Du, T. Li, D.D. Niu, Y.C. Chen, J. Feng, J. Han, H. Chen, Y. Tao, D.B. Janssen, B. Wu, Computational redesign of enzymes for regio- and enantioselective hydroamination, Nat. Chem. Biol. 14(2018) 664-670. [140] J.M. Cunningham, G. Koytiger, P.K. Sorger, M. AlQuraishi, Biophysical prediction of protein-peptide interactions and signaling networks using machine learning, Nat. Methods (2020). [141] N.S. Madhukar, P.K. Khade, L. Huang, K. Gayvert, G. Galletti, M. Stogniew, J.E. Allen, P. Giannakakou, O. Elemento, machine learning approach for drug target identification using diverse data types, Nat. Commun. 10(2019). [142] A. Ianevski, A.K. Giri, P. Gautam, A. Kononov, S. Potdar, J. Saarela, K. Wennerberg, T. Aittokallio, Prediction of drug combination effects with a minimal set of experiments, Nature Mach. Intell. 1(2019) 568-577. [143] P. Gainza, F. Sverrisson, F. Monti, E. Rodolà, D. Boscaini, M.M. Bronstein, B.E. Correia, Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning, Nat. Methods 17(2019) 184-192. |
[1] | Peipei Ai, Huiqing Jin, Jie Li, Xiaodong Wang, Wei Huang. Ultra-stable Cu-based catalyst for dimethyl oxalate hydrogenation to ethylene glycol[J]. 中国化学工程学报, 2023, 60(8): 186-193. |
[2] | Hui Jiang, Zijian Zhao, Ning Yu, Yi Qin, Zhengwei Luo, Wenhua Geng, Jianliang Zhu. Synthesis, characterization, and performance comparison of boron using adsorbents based on N-methyl-D-glucosamine[J]. 中国化学工程学报, 2023, 59(7): 16-31. |
[3] | Borui Liu, Tao Zhang, Yi Zheng, Kailong Li, Hui Pan, Hao Ling. A dynamic control structure of liquid-only transfer stream distillation column[J]. 中国化学工程学报, 2023, 59(7): 135-145. |
[4] | Chaoqun Wu, Xun Liu, Fujun Yao, Xin Yang, Yan Wang, Wenyuan Hu. Crystalline-magnetism action in biomimetic mineralization of calcium carbonate[J]. 中国化学工程学报, 2023, 59(7): 146-152. |
[5] | Xiaohong Zhou, Wenfeng Zhou, Wei Zhuang, Chenjie Zhu, Hanjie Ying, Hongman Zhang. Enhanced production of cytidine 5'-monophosphate using biocatalysis of di-enzymes immobilized on amino-functionalized sepharose[J]. 中国化学工程学报, 2023, 58(6): 40-52. |
[6] | Danlei Chen, Yiqing Luo, Xigang Yuan. Cascade refrigeration system synthesis based on hybrid simulated annealing and particle swarm optimization algorithm[J]. 中国化学工程学报, 2023, 58(6): 244-255. |
[7] | Haike Li, Xindong Li, Guozai Ouyang, Lang Li, Zhaohuang Zhong, Meng Cai, Wenhao Li, Wanfu Huang. Tannic acid/Fe3+ interlayer for preparation of high-permeability polyetherimide organic solvent nanofiltration membranes for organic solvent separation[J]. 中国化学工程学报, 2023, 57(5): 17-29. |
[8] | Bin Lin, Wenyao Chen, Nan Song, Zhihua Zhang, Qianhong Wang, Wei Du, Xinggui Zhou, Xuezhi Duan. Mechanistic insights into propylene oxidation to acrolein over gold catalysts[J]. 中国化学工程学报, 2023, 57(5): 39-49. |
[9] | Huan-Huan Yin, Yin-Lei Han, Xiao Yan, Yi-Xin Guan. Proanthocyanidins prevent tau protein aggregation and disintegrate tau filaments[J]. 中国化学工程学报, 2023, 57(5): 63-71. |
[10] | Jixiang Liu, Xin Zhou, Gengfei Yang, Hui Zhao, Zhibo Zhang, Xiang Feng, Hao Yan, Yibin Liu, Xiaobo Chen, Chaohe Yang. Conceptual carbon-reduction process design and quantitative sustainable assessment for concentrating high purity ethylene from wasted refinery gas[J]. 中国化学工程学报, 2023, 57(5): 290-308. |
[11] | Aneela Sabir, Wail Falath, Muhammad Shafiq, Nafisa Gull, Maria Wasim, Karl I. Jacob. Effective desalination and anti-biofouling performance via surface immobilized MWCNTs on RO membrane[J]. 中国化学工程学报, 2023, 56(4): 33-45. |
[12] | Suhang Xun, Cancan Wu, Lida Tang, Mengmeng Yuan, Haofeng Chen, Minqiang He, Wenshuai Zhu, Huaming Li. One-pot in-situ synthesis of coralloid supported VO2 catalyst for intensified aerobic oxidative desulfurization[J]. 中国化学工程学报, 2023, 56(4): 136-140. |
[13] | Yingxiang Ni, Can Yuan, Shilong Li, Jian Lu, Lei Yan, Wei Gu, Weihong Xing, Wenheng Jing. Temperature-induced hydrophobicity transition of MXene membrane for directly preparing W/O emulsions[J]. 中国化学工程学报, 2023, 55(3): 59-62. |
[14] | Fufeng Liu, Luying Jiang, Jingcheng Sang, Fuping Lu, Li Li. Molecular basis of cross-interactions between Aβ and Tau protofibrils probed by molecular simulations[J]. 中国化学工程学报, 2023, 55(3): 173-180. |
[15] | Yu Kiat Lin, Yan-Na Sun, Yu Fan, Hui Yi Leong, Dong-Qiang Lin, Shan-Jing Yao. UV/Vis-based process analytical technology to improve monoclonal antibody and host cell protein separation[J]. 中国化学工程学报, 2023, 55(3): 230-235. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||