[1] S.A. Razzak, M.M. Hossain, R.A. Lucky, A.S. Bassi, H. De Lasa, Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing—a review, Renew. Sust. Energ. Rev. 27(2013) 622-653. [2] W. Sawaengsak, T. Silalertruksa, A. Bangviwat, S.H. Gheewala, Life cycle cost of biodiesel production from microalgae in Thailand, Energy Sustain. Dev. 18(2014) 67-74. [3] P.D.V. Makareviciene, V. Andrulevičiūtė, V. Skorupskaitė, J. Kasperovičienė, Cultivation of microalgae Chlorella sp. and Scenedesmus sp. as a potentional biofuel feedstock, Environ. Res. Eng. Manag. 57(2011) 21-27. [4] M. Sacristán de Alva, V.M. Luna-Pabello, E. Cadena, E. Ortíz, Green microalga Scenedesmus acutus grown on municipal wastewater to couple nutrient removal with lipid accumulation for biodiesel production, Bioresour. Technol. 146(2013) 744-748. [5] J.P. Maity, J. Bundschuh, C.Y. Chen, P. Bhattacharya, Microalgae for third generation biofuel production, mitigation ofgreenhouse gas emissions and wastewater treatment: Present andfuture perspectives—a mini review, Energy 78(2014) 104-113. [6] J. Singh, S. Gu, Commercialization potential of microalgae for biofuels production, Renew. Sust. Energ. Rev. 14(2010) 2596-2610. [7] S. Kasiri, A. Ulrich, V. Prasad, Optimization of CO2 fixation by Chlorella kessleri cultivated in a closed raceway photo-bioreactor, Bioresour. Technol. 194(2015) 144-155. [8] J.F. Reyes, C. Labra, Biomass harvesting and concentration of microalgae Scenedesmus sp. cultivated in a pilot phobioreactor, Biomass Bioenergy 87(2016) 78-83. [9] P. Wensel, G. Helms, B. Hiscox, W.C. Davis, H. Kirchhoff, M. Bule, L. Yu, S. Chen, Isolation, characterization, and validation of oleaginous, multi-trophic, and haloalkaline-tolerant microalgae for two-stage cultivation, Algal Res. 4(2014) 2-11. [10] G. Olivieri, P. Salatino, A. Marzocchella, Advances in photobioreactors for intensive microalgal production: Configurations, operating strategies and applications, J. Chem. Technol. Biotechnol. 89(2014) 178-195. [11] G. Cao, A. Concas, G. Corrias, R. Licheri, R. Orru, M. Pisu, Process for the production of useful materials for sustaining manned space missions on mars through in-situ resources utilization, Bioresour. Technol. 190(2015) 189-195. [12] X. Guo, L. Yao, Q. Huang, Aeration and mass transfer optimization in a rectangular airlift loop photobioreactor for the production of microalgae, Bioresour. Technol. 190(2015) 189-195. [13] Z.H. Kim, H. Park, Y.J. Ryu, D.W. Shin, S.J. Hong, H.L. Tran, S.M. Lim, C.G. Lee, Algal biomass and biodiesel production by utilizing the nutrients dissolved in seawater using semi-permeable membrane photobioreactors, J. Appl. Phycol. 27(2015) 1763-1773. [14] A. Richmond, Biological principles of mass cultivation of photoautotrophic microalgae, Handb. Microalgal Cult, John Wiley & Sons, Ltd, Oxford, UK 2013, pp. 169-204. [15] A. Jacob, E.C. Bucharsky, K. GuenterSchell, The application of transparent glass sponge for improvement of light distribution in photobioreactors, J. Bioprocess. Biotech. 02(2012) 1-8. [16] P.C. Schulze, C. Brindley, J.M. Fernandez, R. Rautenberger, H. Pereira, R.H. Wijffels, V. Kiron, Flashing light does not improve photosynthetic performance and growth of green microalgae, Bioresour. Technol. Report 9(2019) 100367. [17] R.N. Singh, S. Sharma, Development of suitable photobioreactor for algae production —a review, Renew. Sust. Energ. Rev. 16(2012) 2347-2353. [18] S. Krichnavaruk, S. Powtongsook, P. Pavasant, Enhanced productivity of Chaetoceros calcitrans in airlift photobioreactors, Bioresour. Technol. 98(2007) 2123-2130. [19] A. Sánchez Mirón, F. García Camacho, A. Contreras Gómez, E.M. Grima, Y. Chisti, Bubble-column and airlift photobioreactors for algal culture, AIChE J. 46(9) (2000) 1872-1887. [20] H.P. Luo, M.H. Al-Dahhan, Airlift column photobioreactors for Porphyridium sp. culturing: Part II. verification of dynamic growth rate model for reactor performance evaluation, Biotechnol. Bioeng. 109(2012) 942-949. [21] A. Ojha, M. Al-Dahhan, Investigation of local gas holdup and bubble dynamics using four-point optical probe technique in a Split-Cylinder airlift reactor, Int. J. Multiphase Flow 102(2018) 1-15. [22] L.S. Sabri, A.J. Sultan, M.H. Al-dahhan, Assessment of RPT calibration need during microalgae culturing and other biochemical processes, 2017 International Conference on Environmental Impacts of the Oil and Gas Industries: Kudistan Region of Iraq as a Case Study (E20GZ). Koya-Erbil, 2017. 59-64. [23] H.P. Luo, M.H. Al-Dahhan, Airlift column photobioreactors for Porphyridium sp. culturing: Part I. effects of hydrodynamics and reactor geometry, Biotechnol. Bioeng. 109(2012) 932-941. [24] J.C. Merchuk, M. Ronen, S. Giris, S. Arad, Light/dark cycles in the growth of the red microalga Porphyridium sp, Biotechnol. Bioeng. 59(1998) 705-713. [25] H.P. Luo, Analyzing and Modeling of Airlift Photobioreactors for Microalgal and Cyanobacteria Cultures, Ph.D. Thesis, Washington University, Washington, 2005. [26] A. Ojha, M. Al-Dahhan, Local gas holdup and bubble dynamics investigation during microalgae culturing in a split airlift photobioreactor, Chem. Eng. Sci. 175(2018) 185-198. [27] L.S. Sabri, Characterization of the Cylindrical Split Internal-loop Photobioreactor With Scenedesmus Microalgae: Advanced Culturing, Modeling, and Hydrodynamics, Missouri University of Science and Technology, 2018. [28] L.S. Sabri, A.J. Sultan, M.H. Al-Dahhan, Mapping of microalgae culturing via radioactive particle tracking, Chem. Eng. Sci. 192(2018) 739-758. [29] M.K. Al Mesfer, A.J. Sultan, M.H. Al-Dahhan, Study the effect of dense internals on the liquid velocity field and turbulent parameters in bubble column for FischerTropsch (FT) synthesis by using radioactive particle tracking (RPT) technique, Chem. Eng. Sci. 161(2017) 228-248. [30] F. Larachi, M. Cassanello, M. Marie, J. Chaouki, C. Guy, Solids circulation patterns in three-phase fluidized beds containing binary mixtures of particles as inferred from RPT, Chem. Eng. Res. Des. 73(1995) 263-268. [31] S. Roy, Radiotracer and particle tracking methods, modeling and scale-up, AIChE J. 63(2017) 314-326. [32] A. Efhaima, M.H. Al-Dahhan, Assessment of scale-up dimensionless groups methodology of gas-solid fluidized beds using advanced non-invasive measurement techniques (CT and RPT), Can. J. Chem. Eng. 95(2017) 656-669. [33] A.J. Sultan, L.S. Sabri, M.H. Al-Dahhan, Impact of heat-exchanging tube configurations on the gas holdup distribution in bubble columns using gamma-ray computed tomography, Int. J. Multiphase Flow 112(2018) 63. [34] R. Varma, Characterization of Anaerobic Bioreactors for Bioenergy Generation Using a Novel Tomography Technique, Ph.D. Thesis, Washington University, Washington, 2008. [35] A.J. Sultan, L.S. Sabri, J. Shao, M.H. Al-Dahhan, Overcoming the gamma-ray computed tomography data processing pitfalls for bubble column equipped with vertical internal tubes, Can. J. Chem. Eng. 9999(2018) 1-21. [36] A.J. Sultan, L.S. Sabri, M.H. Al-Dahhan, Influence of the size of heat exchanging internals on the gas holdup distribution in a bubble column using gamma-ray computed tomography, Chem. Eng. Sci. 186(2018) 1-25. [37] A.J. Sultan, L.S. Sabri, M.H. Al-Dahhan, Investigating the influence of the configuration of the bundle of heat exchanging tubes and column size on the gas holdup distributions in bubble columns via gamma-ray computed tomography, Exp. Thermal Fluid Sci. 98(2018) 68-85. [38] M.K. Al Mesfer, A.J. Sultan, M.H. Al-Dahhan, Impacts of dense heat exchanging internals on gas holdup cross-sectional distributions and profiles of bubble column using gamma ray Computed Tomography (CT) for FT synthesis, Chem. Eng. J. 300(2016) 317-333. [39] A.J. Sultan, Hydrodynamics Study of the Bubble Columns With Intense Vertical Heatexchanging Tubes Using Gamma-Ray Computed Tomography and Radioactive Particle Tracking Techniques, Ph.D. Thesis, Missouri University of Science and Technology, Rolla, 2018. [40] J.C. Merchuk, M. Gluz, I. Mukmenev, Comparison of photobioreactors for cultivation of the red microalga Porphyridium sp, J. Chem. Technol. Biotechnol. 75(2000) 1119-1126. [41] R.J. Ritchie, Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents, Photosynth. Res. 89(2006) 27-41. [42] N.R. Pallas, Y. Harrison, An automated drop shape apparatus and the surface tension of pure water, Colloids Surf. A Physicochem. Eng. Asp. 43(1990) 169-194. [43] L. Liu, G. Pohnert, D. Wei, Extracellular metabolites from industrial microalgae and their biotechnological potential, Mar. Drugs 14(2016) 191. [44] V. Kontogiorgos, I. Margelou, N. Georgiadis, C. Ritzoulis, Rheological characterization of okra pectins, Food Hydrocoll. 29(2012) 356-362. [45] C. Delattre, G. Pierre, C. Laroche, P. Michaud, Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides, Biotechnol. Adv. 34(2016) 1159-1179. [46] J.C. Merchuk, Airlift bioreactors: Review of recent advances, Can. J. Chem. Eng. 81(2008) 324-337. [47] Y. Chisti, Pneumatically agitated bioreactors in industrial and environmental bioprocessing: hydrodynamics, hydraulics, and transport phenomena, Appl. Mech. Rev. 51(1998) 33-112. [48] M.H.A. Michels, A.J. Van Der Goot, N.H. Norsker, R.H. Wijffels, Effects of shear stress on the microalgae Chaetoceros muelleri, Bioprocess Biosyst. Eng. 33(2010) 921-927. [49] J.C. Merchuk, M. Gluz, I. Mukmenev, Comparison of photobioreactors for cultivation of the red microalga Porphyridium sp, J. Chem. Technol. Biotechnol. 75(2000) 1119-1126. [50] H.P. Luo, M.H. Al-Dahhan, Macro-mixing in a draft-tube airlift bioreactor, Chem. Eng. Sci. 63(2008) 1572-1585. [51] L.S. Sabri, A.J. Sultan, M.H. Al-Dahhan, Investigating the cross-sectional gas holdup distribution in a split internal-loop photobioreactor during microalgae culturing using a sophisticated computed tomography (CT) technique, Chem. Eng. Res. Des. 149(2019) 13-33. [52] J. Villermaux, Trajectory length distribution (TLD), a novel concept to characterize mixing in flow systems, Chem. Eng. Sci. 51(1996) 1939-1946. |