中国化学工程学报 ›› 2021, Vol. 40 ›› Issue (12): 1-17.DOI: 10.1016/j.cjche.2020.10.025
• Review • 下一篇
P. Vignesh1, A.R. Pradeep Kumar2, N. Shankar Ganesh3, V. Jayaseelan4, K. Sudhakar5,6
收稿日期:
2020-08-09
修回日期:
2020-10-06
出版日期:
2021-12-28
发布日期:
2022-01-14
通讯作者:
P. Vignesh,E-mail:mech.vignesh@iiet.ac.in
基金资助:
P. Vignesh1, A.R. Pradeep Kumar2, N. Shankar Ganesh3, V. Jayaseelan4, K. Sudhakar5,6
Received:
2020-08-09
Revised:
2020-10-06
Online:
2021-12-28
Published:
2022-01-14
Contact:
P. Vignesh,E-mail:mech.vignesh@iiet.ac.in
Supported by:
摘要: The need for sustainable fuels has resulted in the production of renewables from a wide range of sources, in particular organic fats and oils. The use of biofuel is becoming more widespread as a result of environmental and economic considerations. Several efforts have been made to substitute fossil fuels with green fuels. Ester molecules extracted from processed animal fats and organic plant materials are considered alternatives for the use in modern engine technologies. Two different methods have been adopted for converting esters in vegetable oils/animal fats into compounds consistent with petroleum products, namely the transesterification and the hydro-processing of ester bonds for the production of biodiesel. This review paper primarily focuses on conventional and renewable biodiesel feedstocks, the catalyst used and reaction kinetics of the production process.
P. Vignesh, A.R. Pradeep Kumar, N. Shankar Ganesh, V. Jayaseelan, K. Sudhakar. A review of conventional and renewable biodiesel production[J]. 中国化学工程学报, 2021, 40(12): 1-17.
P. Vignesh, A.R. Pradeep Kumar, N. Shankar Ganesh, V. Jayaseelan, K. Sudhakar. A review of conventional and renewable biodiesel production[J]. Chinese Journal of Chemical Engineering, 2021, 40(12): 1-17.
[1] Ashok, B., Nanthagopal, K., Anand, V., Aravind, K. M., Jeevanantham, A. K., &Balusamy, S. (2019). Effects of n-octanol as a fuel blend with biodiesel on diesel engine characteristics. Fuel, 235, 363-373 [2] Amin, A. (2019). Review of diesel production from renewable resources: Catalysis, process kinetics and technologies. Ain Shams Engineering Journal, 10(4), 821-839 [3] Arvindnarayan, S., Shobana, S., Dharmaraja, J., Nguyen, D. D., Chang, S. W., Atabani, A. E.,.. & Prabhu, K. K. S. (2019). Spectral, in vitro biological, engine and emission performances of biodiesel production from Chlorella protothecoides: a sustainable renewable energy source. Waste and Biomass Valorization, 1-11 [4] Catarino, M., Ramos, M., Dias, A. P. S., Santos, M. T., Puna, J. F., & Gomes, J. F. (2017). Calcium Rich Food Wastes Based Catalysts for Biodiesel Production. Waste and Biomass Valorization, 8(5), 1699–1707. https://doi.org/10.1007/s12649-017-9988-8 [5] Hoang, A. T., & Le, A. T. (2019). A review on deposit formation in the injector of diesel engines running on biodiesel. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 41(5), 584-599 [6] Erdiwansyah, R. Mamat, M. S. M. Sani, K. Sudhakar, A. Kadarohman, and R. E. Sardjono,(2019) “An overview of Higher alcohol and biodiesel as alternative fuels in engines,” Energy Reports, vol. 5, 2019, doi: 10.1016/j.egyr.2019.04.009 [7] Rajak, U., Nashine, P., & Verma, T. N. (2019). Assessment of diesel engine performance using spirulina microalgae biodiesel. Energy, 166, 1025-1036 [8] Abdulkareem-Alsultan, G., Asikin-Mijan, N., Lee, H. V., Rashid, U., Islam, A., & Taufiq-Yap, Y. H. (2019). A Review on Thermal Conversion of Plant Oil (Edible and Inedible) into Green Fuel Using Carbon-Based Nanocatalyst. Catalysts, 9(4), 350 [9] Selvaraj, R., Praveenkumar, R., & Moorthy, I. G. (2019). A comprehensive review of biodiesel production methods from various feedstocks. Biofuels, 10(3), 325-333 [10] Alvarez-Galvan, M. C., Campos-Martin, J. M., & Fierro, J. L. (2019). Transition metal phosphides for the catalytic hydrodeoxygenation of waste oils into green diesel. Catalysts, 9(3), 293 [11] Guo, M., Xiao, P., & Li, H. (2019). Valorization of Agricultural Byproducts Through Conversion to Biochar and Bio‐OilBy-productsts from Agriculture and Fisheries: Adding Value for Food, Feed, Pharma, and Fuels, 501-522 [12] Patel, M., Oyedun, A. O., Kumar, A., & Gupta, R. (2019). A techno-economic assessment of renewable diesel and gasoline production from aspen hardwood. Waste and Biomass Valorization, 10(10), 2745-2760 [13] Chiatti, G., Chiavola, O., & Palmieri, F. (2019). Impact on Combustion and Emissions of Jet Fuel as Additive in Diesel Engine Fueled with Blends of Petrol Diesel, Renewable Diesel and Waste Cooking Oil Biodiesel. Energies, 12(13), 2488 [14] Sonthalia, A., & Kumar, N. (2019). Hydroprocessed vegetable oil as a fuel for transportation sector: A review. Journal of the Energy Institute, 92(1), 1-17 [15] Mączyńska, J., Krzywonos, M., Kupczyk, A., Tucki, K., Sikora, M., Pińkowska, H.,..&Wielewska, I. (2019). Production and use of biofuels for transport in Poland and Brazil–The case of bioethanol. Fuel, 241, 989-996 [16] Prabhu, A., VenkataRamanan, M., &Jayaprabakar, J. (2020). Effect of compression ratio on the performance of CI engine fuelled with freshwater algae biodiesel. International Journal of Ambient Energy, 41(1), 80-83 [17] Kayode, B., & Hart, A. (2019). An overview of transesterification methods for producing biodiesel from waste vegetable oils. Biofuels, 10(3), 419-437 [18] Dash, S. K., Chavan, S. B., Kumar, A., Ahamed, M. S., &Lingfa, P. (2020). Jatropha Biodiesel Blends as Renewable Diesel Fuel Additives. In Bioresource Utilization and Bioprocess (pp. 93-105). Springer, Singapore [19] Sun, C. H., Fu, Q., Liao, Q., Xia, A., Huang, Y., Zhu, X.,..& Chang, H. X. (2019). Life-cycle assessment of biofuel production from microalgae via various bioenergy conversion systems. Energy, 171, 1033-1045 [20] Razavi, R., Bemani, A., Baghban, A., Mohammadi, A. H., &Habibzadeh, S. (2019). An insight into the estimation of fatty acid methyl ester based biodiesel properties using a LSSVM model. Fuel, 243, 133-141 [21] Bolonio, D., García-Martínez, M. J., Ortega, M. F., Lapuerta, M., Rodríguez-Fernández, J., &Canoira, L. (2019). Fatty acid ethyl esters (FAEEs) obtained from grapeseed oil: a fully renewable biofuel. Renewable Energy, 132, 278-283 [22] Tabatabai, B., Fathabad, S. G., Bonyi, E., Rajini, S., Aslan, K., &Sitther, V. (2019). Nanoparticle-mediated impact on growth and fatty acid methyl ester composition in the CyanobacteriumFremyelladiplosiphon. BioEnergy Research, 12(2), 409-418 [23] Kuszewski, H. (2019). Experimental investigation of the autoignition properties of ethanol–biodiesel fuel blends. Fuel, 235, 1301-1308 [24] Ibarra-Gonzalez, P., & Rong, B. G. (2019). A review of the current state of biofuels production from lignocellulosic biomass using thermochemical conversion routes. Chinese Journal of Chemical Engineering, 27(7), 1523-1535 [25] Zabed, H. M., Akter, S., Yun, J., Zhang, G., Awad, F. N., Qi, X., & Sahu, J. N. (2019). Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production. Renewable and Sustainable Energy Reviews, 105, 105-128 [26] Yuan, H., Guan, R., Wachemo, A. C., Zhang, Y., Zuo, X., & Li, X. (2020). Improving physicochemical characteristics and anaerobic digestion performance of rice straw via ammonia pretreatment at varying concentrations and moisture levels. Chinese Journal of Chemical Engineering, 28(2), 541-547 [27] Lü, H., Shi, X., Li, Y., Meng, F., Liu, S., & Yan, L. (2017). Multi-objective regulation in autohydrolysis process of corn stover by liquid hot water pretreatment. Chinese Journal of Chemical Engineering, 25(4), 499-506 [28] Rezania, S., Oryani, B., Park, J., Hashemi, B., Yadav, K. K., Kwon, E. E.,..& Cho, J. (2019). Review on transesterification of non-edible sources for biodiesel production with a focus on economic aspects, fuel properties and by-product applications. Energy Conversion and Management, 201, 112155 [29] Li, H., Liu, F., Ma, X., Wu, Z., Li, Y., Zhang, L.,..&Helian, Y. (2019). Catalytic performance of strontium oxide supported by MIL–100 (Fe) derivate as transesterification catalyst for biodiesel production. Energy Conversion and Management, 180, 401-410 [30] Odude, V. O., Adesina, A. J., Oyetunde, O. O., Adeyemi, O. O., Ishola, N. B., Etim, A. O., &Betiku, E. (2019). Application of agricultural waste-based catalysts to transesterification of esterified palm kernel oil into biodiesel: a case of banana fruit peel versus cocoa pod husk. Waste and Biomass Valorization, 10(4), 877-888 [31] Akubude, V. C., Nwaigwe, K. N., &Dintwa, E. (2019). Production of biodiesel from microalgae via nanocatalyzedtransesterification process: A review. Materials Science for Energy Technologies, 2(2), 216-225 [32] Tsavatopoulou, V. D., Aravantinou, A. F., &Manariotis, I. D. (2019). Biofuel conversion of Chlorococcum sp. and Scenedesmus sp. biomass by one-and two-step transesterification. Biomass Conversion and Biorefinery, 1-9 [33] Nayak, S. N., Bhasin, C. P., &Nayak, M. G. (2019). A review on microwave-assisted transesterification processes using various catalytic and non-catalytic systems. Renewable Energy, 143, 1366-1387 [34] Teixeira, C. O., Pedro, K. C., Fernandes, T. L., Henriques, C. A., &Zotin, F. M. (2019). Esterification of high acidity vegetable oil catalyzed by tin-based catalysts with different sulfate contents: contribution of homogeneous catalysis. Chemical Engineering Communications, 206(2), 169-181 [35] Tacias-Pascacio, V. G., Torrestiana-Sánchez, B., Dal Magro, L., Virgen-Ortíz, J. J., Suárez-Ruíz, F. J., Rodrigues, R. C., & Fernandez-Lafuente, R. (2019). Comparison of acid, basic and enzymatic catalysis on the production of biodiesel after RSM optimization. Renewable Energy, 135, 1-9 [36] Ahmad, T., Danish, M., Kale, P., Geremew, B., Adeloju, S. B., Nizami, M., &Ayoub, M. (2019). Optimization of process variables for biodiesel production by transesterification of flaxseed oil and produced biodiesel characterizations. Renewable Energy, 139, 1272-1280 [37] Khiari, K., Tarabet, L., Awad, S., Loubar, K., Mahmoud, R., &Tazerout, M. (2019). Optimization of Pistacialentiscus oil transesterification process using central composite design. Waste and Biomass Valorization, 10(9), 2575-2581 [38] Martínez, A., Mijangos, G. E., Romero-Ibarra, I. C., Hernández-Altamirano, R., & Mena-Cervantes, V. Y. (2019). In-situ transesterification of Jatrophacurcas L. seeds using homogeneous and heterogeneous basic catalysts. Fuel, 235, 277-287 [39] Moazeni, F., Chen, Y. C., & Zhang, G. (2019). Enzymatic transesterification for biodiesel production from used cooking oil, a review. Journal of Cleaner Production, 216, 117-128 [40] Dosso, L. A., Luggren, P. J., & Di Cosimo, J. I. (2020). Synthesis of Edible Vegetable Oils Enriched with Healthy 1, 3‐Diglycerides Using Crude Glycerol and Homogeneous/Heterogeneous Catalysis. Journal of the American Oil Chemists' Society, 97(5), 551-561 [41] Abid, M., Touzani, A., &Benhima, R. (2019). Synthesis of biodiesel frochicken's's skin waste by homogeneous transesterification. International Journal of Sustainable Engineering, 12(4), 272-280 [42] Elango, R. K., Sathiasivan, K., Muthukumaran, C., Thangavelu, V., Rajesh, M., &Tamilarasan, K. (2019). Transesterification of castor oil for biodiesel production: Process optimization and characterization. Microchemical Journal, 145, 1162-1168 [43] Thoai, D. N., Chanakaewsomboon, I., Prasertsit, K., Photaworn, S., &Tongurai, C. (2019). A novel inspection of mechanisms in conversion of refined palm oil to biodiesel with alkaline catalyst. Fuel, 256, 115831 [44] Rajagopalachar, S., Joshi, S. S., & Reddy, R. P. (2019). Biodiesel synthesis from Garciniagummi-gutta (L. Robson) seed oil: fuel feasibility evaluation of a novel feedstock by homogeneous and heterogeneous transesterification. Biofuels, 10(3), 403-410 [45] Borah, M. J., Das, A., Das, V., Bhuyan, N., &Deka, D. (2019). Transesterification of waste cooking oil for biodiesel production catalyzed by Zn substituted waste egg shell derived CaOnanocatalyst. Fuel, 242, 345-354 [46] Kataria, J., Mohapatra, S. K., &Kundu, K. (2019). Biodiesel production from waste cooking oil using heterogeneous catalysts and its operational characteristics on variable compression ratio CI engine. Journal of the Energy Institute, 92(2), 275-287 [47] Rocha, P. D., Oliveira, L. S., & Franca, A. S. (2019). Sulfonated activated carbon from corn cobs as heterogeneous catalysts for biodiesel production using microwave-assisted transesterification. Renewable Energy, 143, 1710-1716 [48] Borah, M. J., Devi, A., Borah, R., &Deka, D. (2019). Synthesis and application of Co doped ZnO as heterogeneous nanocatalyst for biodiesel production from non-edible oil. Renewable Energy, 133, 512-519 [49] Chingakham, C., Tiwary, C., &Sajith, V. (2019). Waste animal bone as a novel layered heterogeneous catalyst for the transesterification of biodiesel. Catalysis Letters, 149(4), 1100-1110 [50] Niju, S., Anushya, C., &Balajii, M. (2019). Process optimization for biodiesel production from Moringaoleifera oil using conch shells as heterogeneous catalyst. Environmental Progress & Sustainable Energy, 38(3), e13015 [51] AVSL Sai, B., & KM Meera, B. (2019). Optimization and modeling of biodiesel production using fluorite as a heterogeneous catalyst. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 41(15), 1862-1878 [52] Puna, J. F., Gomes, J. F., Correia, M. J. N., Soares Dias, A. P., & Bordado, J. C. (2010). Advances on the development of novel heterogeneous catalysts for transesterification of triglycerides in biodiesel.Fuel, 89(11), 3602–3606. https://doi.org/10.1016/j.fuel.2010.05.035 [53] Ishola, N. B., Okeleye, A. A., Osunleke, A. S., &Betiku, E. (2019). Process modeling and optimization of sorrel biodiesel synthesis using barium hydroxide as a base heterogeneous catalyst: appraisal of response surface methodology, neural network and neuro-fuzzy system. Neural Computing and Applications, 31(9), 4929-4943 [54] Quah, R. V., Tan, Y. H., Mubarak, N. M., Khalid, M., Abdullah, E. C., & Nolasco-Hipolito, C. (2019). An overview of biodiesel production using recyclable biomass and non-biomass derived magnetic catalysts. Journal of Environmental Chemical Engineering, 7(4), 103219 [55] Chowdhury, S., Dhawane, S. H., Jha, B., Pal, S., Sagar, R., Hossain, A., & Halder, G. (2019). Biodiesel synthesis from transesterifiedMadhucaindica oil by waste egg shell–derived heterogeneous catalyst: parametric optimization by Taguchi approach. Biomass Conversion and Biorefinery, 1-11 [56] Mendonça, I. M., Paes, O. A., Maia, P. J., Souza, M. P., Almeida, R. A., Silva, C. C.,.. & de Freitas, F. A. (2019). New heterogeneous catalyst for biodiesel production from waste tucumã peels (Astrocaryumaculeatum Meyer): Parameters optimization study. Renewable energy, 130, 103-110 [57] Taher, H., Nashef, E., Anvar, N., & Al-Zuhair, S. (2019). Enzymatic production of biodiesel from waste oil in ionic liquid medium. Biofuels, 10(4), 463-472 [58] Dhawane, S. H., Chowdhury, S., &Halder, G. (2019). Lipase immobilised carbonaceous catalyst assisted enzymatic transesterification of Mesuaferrea oil. Energy Conversion and Management, 184, 671-680 [59] Murillo, G., Ali, S. S., Sun, J., Yan, Y., Bartocci, P., El-Zawawy, N.,..&Fantozzi, F. (2019). Ultrasonic emulsification assisted immobilized Burkholderiacepacia lipase catalyzed transesterification of soybean oil for biodiesel production in a novel reactor design. Renewable Energy, 135, 1025-1034 [60] Kara, K., Ouanji, F., El Mahi, M., Lotfi, E. M., Kacimi, M., &Mahfoud, Z. (2019). Biodiesel synthesis from vegetable oil using eggshell waste as a heterogeneous catalyst. Biofuels, 1-7 [61] Encinar, J. M., González, J. F., Sánchez, N., & Nogales-Delgado, S. (2019). Sunflower oil transesterification with methanol using immobilized lipase enzymes. Bioprocess and biosystems engineering, 42(1), 157-166 [62] Guldhe, A., Singh, P., Renuka, N., &Bux, F. (2019). Biodiesel synthesis from wastewater grown microalgal feedstock using enzymatic conversion: A greener approach. Fuel, 237, 1112-1118 [63] Bhavsar, K. V., &Yadav, G. D. (2019). Synthesis of geranyl acetate by transesterification of geraniol with ethyl acetate over Candida antarctica lipase as catalyst in solvent‐free system. Flavour and Fragrance Journal, 34(4), 288-293 [64] Prabakaran, P., Pradeepa, V., Selvakumar, G., &Ravindran, A. D. (2019). Efficacy of enzymatic transesterification of Chlorococcum sp. algal oils for biodiesel production. Waste and Biomass Valorization, 10(7), 1873-1881 [65] Aguieiras, E. C., de Barros, D. S., Fernandez-Lafuente, R., &Freire, D. M. (2019). Production of lipases in cottonseed meal and application of the fermented solid as biocatalyst in esterification and transesterification reactions. Renewable energy, 130, 574-581 [66] Kumar, S. A., Sakthinathan, G., Vignesh, R., Banu, J. R., &Ala'a, H. (2019). Optimized transesterification reaction for efficient biodiesel production using Indian oil sardine fish as feedstock. Fuel, 253, 921-929 [67] Gao, Y., Chen, Y., Gu, J., Xin, Z., & Sun, S. (2019). Butyl-biodiesel production from waste cooking oil: Kinetics, fuel properties and emission performance. Fuel, 236, 1489-1495 [68] Bora, A. P., Gupta, D. P., &Durbha, K. S. (2020). Sewage sludge to bio-fuel: A review on the sustainable approach of transforming sewage waste to alternative fuel. Fuel, 259, 116262 [69] Thangaraj, B., & Solomon, P. R. (2019). Immobilization of lipases–A review. Part I: Enzyme immobilization. ChemBioEng Reviews, 6(5), 157-166 [70] Akkarawatkhoosith, N., Kaewchada, A., &Jaree, A. (2019). Simultaneous development of biodiesel synthesis and fuel quality via continuous supercritical process with reactive co-solvent. Fuel, 237, 117-125 [71] Kumar, S., &Deswal, V. (2019). Optimization at low temperature transesterification biodiesel production from soybean oil methanolysis via response surface methodology. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-10 [72] Chamola, R., Khan, M. F., Raj, A., Verma, M., & Jain, S. (2019). Response surface methodology based optimization of in situ transesterification of dry algae with methanol, H2SO4 and NaOH. Fuel, 239, 511-520 [73] S. Bahadur, P. Goyal, K. Sudhakar, and J. P. Bijarniya,(2019) “A comparative study of ultrasonic and conventional methods of biodiesel production from mahua oil,” Biofuels, vol. 6, no. 1–2, 2015, doi: 10.1080/17597269.2015.1057790 [74] S. Bahadur, P. Goyal, and K. Sudhakar, “Ultrasonic Assisted Transesterification of Neem Oil for Biodiesel Production,(2015). Energy Sources, Part A Recover. Util. Environ. Eff., vol. 37, no. 17, doi: 10.1080/15567036.2014.911783 [75] Nayak, M. G., & Vyas, A. P. (2019). Optimization of microwave-assisted biodiesel production from Papaya oil using response surface methodology. Renewable Energy, 138, 18-28 [76] Silitonga, A. S., Shamsuddin, A. H., Mahlia, T. M. I., Milano, J., Kusumo, F., Siswantoro, J.,..& Ong, H. C. (2020). Biodiesel synthesis from Ceibapentandra oil by microwave irradiation-assisted transesterification: ELM modeling and optimization. Renewable Energy, 146, 1278-1291 [77] Saengsawang, B., Bhuyar, P., Manmai, N., Ponnusamy, V. K., Ramaraj, R., &Unpaprom, Y. (2020). The optimization of oil extraction from macroalgae, Rhizoclonium sp. by chemical methods for efficient conversion into biodiesel. Fuel, 274, 117841 [78] Mohan, S., Pal, A., Singh, R. K., & Mishra, R. S. (2019). Pressurized ultrasonic production of biodiesel from Jatropha oil: optimization and energy analysis. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 41(3), 261-268 [79] Veljković, V. B., Stamenković, O. S., & Tasić, M. B. (2014). The wastewater treatment in the biodiesel production with alkali-catalyzed transesterification. Renewable and sustainable energy reviews, 32, 40-60 [80] Atadashi, I. M., Aroua, M. K., & Aziz, A. A. (2011). Biodiesel separation and purification: a review. Renewable Energy, 36(2), 437-443 [81] Asadi, P., Rad, H. A., & Qaderi, F. (2019). Comparison of Chlorella vulgaris and Chlorella sorokiniana pa. 91 in post treatment of dairy wastewater treatment plant effluents. Environmental Science and Pollution Research, 26(28), 29473-29489 [82] Zhong, N., Chandra, R., & Saddler, J. J. N. (2019). Sulfite post-treatment to simultaneously detoxify and improve the enzymatic hydrolysis and fermentation of a steam-pretreated softwood lodgepole pine whole slurry. ACS Sustainable Chemistry & Engineering, 7(5), 5192-5199 [83] Ji, L., Lei, F., Zhang, W., Song, X., Jiang, J., & Wang, K. (2019). Enhancement of bioethanol production from Moso bamboo pretreated with biodiesel crude glycerol: Substrate digestibility, cellulase absorption and fermentability. Bioresource technology, 276, 300-309 [84] Ajdar, M. A., Azdarpour, A., Mansourizadeh, A., & Honarvar, B. (2020).Improvement of porous polyvinylidene fluoride-co-hexafluropropylene hollow fiber membranes for sweeping gas membrane distillation of ethylene glycol solution. Chinese Journal of Chemical Engineering [85] Rea, M. T., Pan, F., Horak, E. H., Knapper, K. A., Nguyen, H. L., Vollbrecht, C. H., & Goldsmith, R. H. (2019). Investigating the Mechanism of Post-Treatment on PEDOT/PSS via Single-Particle Absorption Spectroscopy. The Journal of Physical Chemistry C, 123(51), 30781-30790 [86] Marso, T. M. M., Kalpage, C. S., & Udugala-Ganehenege, M. Y. (2019). Application of Chromium and Cobalt Terephthalate Metal Organic Frameworks as Catalysts for the Production of Biodiesel from Calophyllum inophyllum Oil in High Yield Under Mild Conditions. Journal of Inorganic and Organometallic Polymers and Materials, 1-23 [87] Zhang, A., Wang, Q., He, Y., Lai, P., Miu, Y., & Xiao, Z. (2020, January). Preparation of Biodiesel Based on Alkaline Ionic Liquid [Bmim] OH Catalyzed Castor Oil. In IOP Conference Series: Materials Science and Engineering (Vol. 729, No. 1, p. 012048). IOP Publishing [88] Ampairojanawong, R., Boripun, A., Ruankon, S., Suwanasri, T., & Kangsadan, T. (2020). Development of Purification Process Using Electrocoagulation Technique for Biodiesel Produced via Homogeneous Catalyzed Transesterification Process of Refined Palm Oil. In E3S Web of Conferences (Vol. 141, p. 01010).EDP Sciences [89] Venkanna, B. K., & Reddy, C. V. (2009). Biodiesel production and optimization from Calophyllum inophyllum linn oil (honne oil)–A three stage method. Bioresource Technology, 100(21), 5122-5125 [90] Praveenkumar, R., Shameera, K., Mahalakshmi, G., Akbarsha, M. A., & Thajuddin, N. (2012). Influence of nutrient deprivations on lipid accumulation in a dominant indigenous microalga Chlorella sp., BUM11008: Evaluation for biodiesel production. Biomass and Bioenergy, 37, 60-66 [91] Akgün, N., & İşcan, E. (2007). Effects of process variables for biodiesel production by transesterification. European Journal of Lipid Science and Technology, 109(5), 486-492 [92] Kligerman, D. C., & Bouwer, E. J. (2015). Prospects for biodiesel production from algae-based wastewater treatment in Brazil: A review. Renewable and Sustainable Energy Reviews, 52, 1834-1846 [93] Singh, J., & Thakur, I. S. (2015). Evaluation of cyanobacterial endolith Leptolyngbya sp. ISTCY101, for integrated wastewater treatment and biodiesel production: A toxicological perspective. Algal Research, 11, 294-303 [94] Tabatabaei, M., Karimi, K., Sárvári Horváth, I., & Kumar, R. (2015). Recent trends in biodiesel production. Biofuel Research Journal, 2(3), 258-267 [95] Li, C., Duan, C., Fang, J., & Li, H. (2019). Process intensification and energy saving of reactive distillation for production of ester compounds. Chinese Journal of Chemical Engineering, 27(6), 1307-1323 [96] Dimian, A. C., & Kiss, A. A. (2019). Eco-efficient processes for biodiesel production from waste lipids. Journal of Cleaner Production, 239, 118073 [97] Noriega, A. K., Tirado, A., Méndez, C., Marroquín, G., & Ancheyta, J. (2020). Hydrodeoxygenation of vegetable oil in batch reactor: Experimental considerations. Chinese Journal of Chemical Engineering [98] Tan, I. S., Lam, M. K., Foo, H. C. Y., Lim, S., & Lee, K. T. (2020).Advances of macroalgae biomass for the third generation of bioethanol production. Chinese Journal of Chemical Engineering, 28(2), 502-517 [99] Kumar, R., Ghosh, A. K., & Pal, P. (2020).Sustainable production of biofuels through membrane-integrated systems. Separation & Purification Reviews, 49(3), 207-228 [100] Shuit, S. H., & Tan, S. H. (2019). Esterification of palm fatty acid distillate with methanol via single-step pervaporation membrane reactor: A novel biodiesel production method. Energy Conversion and Management, 201, 112110 [101] Ndiaye, M., Arhaliass, A., Legrand, J., Roelens, G., & Kerihuel, A. (2020). Reuse of waste animal fat in biodiesel: Biorefining heavily-degraded contaminant-rich waste animal fat and formulation as diesel fuel additive. Renewable Energy, 145, 1073-1079 [102] Fonseca, J. M., Teleken, J. G., de Cinque Almeida, V., & da Silva, C. (2019). Biodiesel from waste frying oils: Methods of production and purification. Energy Conversion and Management, 184, 205-218 [103] Sahani, S., Roy, T., & Sharma, Y. C. (2019).Clean and efficient production of biodiesel using barium cerate as a heterogeneous catalyst for the biodiesel production; kinetics and thermodynamic study. Journal of Cleaner Production, 237, 117699 [104] Mengyu, G. A. N., Deng, P. A. N., Li, M. A., En, Y. U. E., & Jianbing, H. O. N. G. (2009). The kinetics of the esterification of free fatty acids in waste cooking oil using Fe2(SO4)3/C catalyst. Chinese Journal of Chemical Engineering, 17(1), 83-87 [105] Roy, T., Sahani, S., & Sharma, Y. C. (2020). Study on kinetics-thermodynamics and environmental parameter of biodiesel production from waste cooking oil and castor oil using potassium modified ceria oxide catalyst. Journal of Cleaner Production, 247, 119166 [106] Lü, L., Zhu, L., Liu, H., Li, H., & Sun, S. (2018). Comparison of continuous homogenous azeotropic and pressure-swing distillation for a minimum azeotropic system ethyl acetate/n-hexane separation. Chinese Journal of Chemical Engineering, 26(10), 2023-2033 [107] Weina, Z. H. U., CHANG, C., Chen, M. A., & Fengguang, D. U. (2014).Kinetics of glucose ethanolysis catalyzed by extremely low sulfuric acid in ethanol medium. Chinese Journal of Chemical Engineering, 22(2), 238-242 [108] Rahim, S. A. N. M., Lee, C. S., Abnisa, F., Aroua, M. K., Daud, W. A. W., Cognet, P., & Pérès, Y. (2020). A review of recent developments on kinetics parameters for glycerol electrochemical conversion–A by-product of biodiesel. Science of the Total Environment, 705, 135137 [109] Qing, S. H. U., Jixian, G. A. O., Yuhui, L. I. A. O., & Jinfu, W. A. N. G. (2011). Reaction kinetics of biodiesel synthesis from waste oil using a carbon-based solid acid catalyst. Chinese Journal of Chemical Engineering, 19(1), 163-168 [110] Mahlia, T. M. I., Syazmi, Z. A. H. S., Mofijur, M., Abas, A. P., Bilad, M. R., Ong, H. C., & Silitonga, A. S. (2020). Patent landscape review on biodiesel production: Technology updates. Renewable and Sustainable Energy Reviews, 118, 109526 [111] Singh, D., Sharma, D., Soni, S. L., Sharma, S., & Kumari, D. (2019). Chemical compositions, properties, and standards for different generation biodiesels: A review. Fuel, 253, 60-71 [112] Tucki, K., Mruk, R., Orynycz, O., Wasiak, A., Botwińska, K., & Gola, A. (2019). Simulation of the operation of a spark ignition engine fueled with various biofuels and its contribution to technology management. Sustainability, 11(10), 2799 [113] Darda, S., Papalas, T., & Zabaniotou, A. (2019). Biofuels journey in Europe: currently the way to low carbon economy sustainability is still a challenge. Journal of Cleaner Production, 208, 575-588 [114] Nogueira, L. A. H., Souza, G. M., Cortez, L. A. B., & de Brito Cruz, C. H. (2020).Biofuels for Transport. In Future Energy (pp. 173-197). Elsevier [115] Christoforou, E., & Fokaides, P. A. (2019).Solid Biofuels in Trading Form in Global Markets.In Advances in Solid Biofuels (pp. 57-68).Springer, Cham [116] Rodríguez-Fernández, J., Hernández, J. J., Calle-Asensio, A., Ramos, Á.,& Barba, J. (2019). Selection of blends of diesel fuel and advanced biofuels based on their physical and thermochemical properties. Energies, 12(11), 2034 [117] Unglert, M., Bockey, D., Bofinger, C., Buchholz, B., Fisch, G., Luther, R.,..& Schümann, U. (2020). Action areas and the need for research in biofuels. Fuel, 268, 117227 [118] Collotta, M., Champagne, P., Tomasoni, G., Alberti, M., Busi, L., & Mabee, W. (2019). Critical indicators of sustainability for biofuels: An analysis through a life cycle sustainabilty assessment perspective. Renewable and Sustainable Energy Reviews, 115, 109358 [119] Mousavi, S., & Bossink, B. (2020). Corporate-NGO partnership for environmentally sustainable innovation: Lessons from a cross-sector collaboration in aviation biofuels. Environmental Innovation and Societal Transitions, 34, 80-95 [120] Kuo, T. C., Lin, S. H., Tseng, M. L., Chiu, A. S., & Hsu, C. W. (2019). Biofuels for vehicles in Taiwan: Using system dynamics modeling to evaluate government subsidy policies. Resources, Conservation and Recycling, 145, 31-39 [121] Meng, F., & McKechnie, J. (2019). Challenges in Quantifying Greenhouse Gas Impacts of Waste-Based Biofuels in EU and US Biofuel Policies: Case Study of Butanol and Ethanol Production from Municipal Solid Waste. Environmental Science & Technology, 53(20), 12141-12149 [122] Hongloi, N., Prapainainar, P., Seubsai, A., Sudsakorn, K., &Prapainainar, C. (2019).Nickel catalyst with different supports for green diesel production. Energy, 182, 306-320 [123] Zharova, P. A., Chistyakov, A. V., Shapovalov, S. S., Pasynskii, A. A., &Tsodikov, M. V. (2019). Original Pt-Sn/Al2O3 catalyst for selective hydrodeoxygenation of vegetable oils. Energy, 172, 18-25 [124] Azad, K., &Rasul, M. (2019). Performance and combustion analysis of diesel engine fueled with grape seed and waste cooking biodiesel. Energy Procedia, 160, 340-347 [125] Scaldaferri, C. A., &Pasa, V. M. D. (2019). Green diesel production from upgrading of cashew nut shell liquid. Renewable and Sustainable Energy Reviews, 111, 303-313 [126] Zikri A., Aznury M., Green diesel production from Crude Palm Oil (CPO) using catalytic hydrogenation method, Iop Conf. Ser. Mater. Sci. Eng. 823 (2020) 012026 [127] Valencia, D., Conde, R. I., García, B., Ramírez-Verduzco, L. F., &Aburto, J. (2020). Development of bio-inspired supports based on Ca–SiO2 and their use in hydrodeoxygenation of palmitic acid. Renewable Energy, 148, 1034-1040 [128] Kukushkin, R. G., Reshetnikov, S. I., Zavarukhin, S. G., Eletskii, P. M., &Yakovlev, V. A. (2019). Kinetics of the Hydrodeoxygenation of Ethyl Ester of Decanoic Acid over the Ni–Cu–Mo/Al 2 O 3 Catalyst. Catalysis in Industry, 11(3), 191-197 [129] Kim, Soosan, Eilhann E. Kwon, Yong Tae Kim, Sungyup Jung, HyungJu Kim, George W. Huber, and Jechan Lee. “Recent advances in hydrodeoxygenation of biomass-derived oxygenates over heterogeneous catalysts.” Green Chemistry 21, no. 14 (2019): 3715-3743 [130] Kumar, P., Maity, S. K., &Shee, D. (2019). Hydrodeoxygenation of stearic acid using Mo modified Ni and Co/alumina catalysts: Effect of calcination temperature. Chemical Engineering Communications, 1-16 [131] Phukan, M. M., Bora, P., Gogoi, K., &Konwar, B. K. (2019). Biodiesel from Saccharomyces cerevisiae: fuel property analysis and comparative economics. SN Applied Sciences, 1(2), 153 [132] Navas-Anguita, Z., Cruz, P. L., Martin-Gamboa, M., Iribarren, D., &Dufour, J. (2019). Simulation and life cycle assessment of synthetic fuels produced via biogas dry reforming and Fischer-Tropsch synthesis. Fuel, 235, 1492-1500 [133] García, A., Monsalve-Serrano, J., Villalta, D., Sari, R. L., Zavaleta, V. G., & Gaillard, P. (2019).Potential of e-Fischer Tropsch diesel and oxymethyl-ether (OMEx) as fuels for the dual-mode dual-fuel concept. Applied Energy, 253, 113622 [134] Soloiu, V., Gaubert, R., Moncada, J., Wiley, J., Williams, J., Harp, S.,..&Mothershed, D. (2019). Reactivity controlled compression ignition and low temperature combustion of Fischer-Tropsch Fuel Blended with n-butanol. Renewable Energy, 134, 1173-1189 [135] Kinsey, J. S., Corporan, E., Pavlovic, J., DeWitt, M., Klingshirn, C., & Logan, R. (2019). Comparison of measurement methods for the characterization of the black carbon emissions from a T63 turboshaft engine burning conventional and Fischer-Tropsch fuels. Journal of the Air & Waste Management Association, 69(5), 576-591 [136] Rahbari, A., Shirazi, A., Venkataraman, M. B., &Pye, J. (2019). A solar fuel plant via supercritical water gasification integrated with Fischer–Tropsch synthesis: Steady-state modelling and techno-economic assessment. Energy Conversion and Management, 184, 636-648 [137] Loewert, M., & Pfeifer, P. (2020). Dynamically Operated Fischer-Tropsch Synthesis in PtL-Part 1: System Response on Intermittent Feed. ChemEngineering, 4(2), 21 [138] dos Santos, R. G., &Alencar, A. C. (2019). Biomass-derived syngas production via gasification process and its catalytic conversion into fuels by Fischer Tropsch synthesis: a review. International Journal of Hydrogen Energy [139] Ershov, M., Potanin, D., Gueseva, A., Abdellatief, T. M., & Kapustin, V. (2020). Novel strategy to develop the technology of high-octane alternative fuel based on low-octane gasoline Fischer-Tropsch process. Fuel, 261, 116330 [140] Jürgens, S., Oßwald, P., Selinsek, M., Piermartini, P., Schwab, J., Pfeifer, P.,..&Köhler, M. (2019). Assessment of combustion properties of non-hydroprocessed Fischer-Tropsch fuels for aviation. Fuel Processing Technology, 193, 232-243 [141] Wiryadinata, S., Jenkins, B., Kornbluth, K., & Erickson, P. (2019). Experimental and numerical study into the effects of passive flow disturbance on conversion and C7+ yield of the packed bed Fischer Tropsch reaction. Fuel, 254, 115571 [142] Chrysikou, L. P., Dagonikou, V., Dimitriadis, A., &Bezergianni, S. (2019). Waste cooking oils exploitation targeting EU 2020 diesel fuel production: Environmental and economic benefits. Journal of Cleaner Production, 219, 566-575 [143] No, S. Y. (2019). Parffinic Biofuels: HVO, BTL Diesel, and Farnesane. In Application of Liquid Biofuels to Internal Combustion Engines (pp. 147-179).Springer, Singapore [144] Singh, D., Sarma, A. K., & Sandhu, S. S. (2019). A comprehensive experimental investigation of green diesel as a fuel for CI engines. International Journal of Green Energy, 16(14), 1152-1164 [145] Bhosale, V. V., Rathod, W. S., Bobade, S. N., & Shaikh, A. C. (2020). Investigation on Performance and Emission Characteristics of a Variable Compression Multi-fuel Engine Fuelled with Argemone Mexicana Biodiesel–Diesel Blend. In Techno-Societal 2018 (pp. 551-563).Springer, Cham [146] Venkatesan, V., &Nallusamy, N. (2020). Pine oil-soapnut oil methyl ester blends: A hybrid biofuel approach to completely eliminate the use of diesel in a twin cylinder off-road tractor diesel engine. Fuel, 262, 116500 [147] Kumar, U., & Gupta, P. (2020). Modeling and optimization of novel biodiesel production from non-edible oil with musabalbisiana root using hybrid response surface methodology along with african buffalo optimization. Reaction Kinetics, Mechanisms and Catalysis, 1-27 [148] Ardabili, S., Mosavi, A., &Várkonyi-Kóczy, A. R. (2019, September).Systematic review of deep learning and machine learning models in biofuels research.In International Conference on Global Research and Education (pp. 19-32).Springer, Cham [149] Collett, J. R., Billing, J. M., Meyer, P. A., Schmidt, A. J., Remington, A. B., Hawley, E. R.,.. &Santosa, D. M. (2019). Renewable diesel via hydrothermal liquefaction of oleaginous yeast and residual lignin from bioconversion of corn stover. Applied Energy, 233, 840-853 [150] Mahalingam, S., &Ganesan, S. (2020).Effect of nano-fuel additive on performance and emission characteristics of the diesel engine using biodiesel blends with diesel fuel. International Journal of Ambient Energy, 41(3), 316-321 [151] Tomar, M., & Kumar, N. (2019). Influence of nanoadditives on the performance and emission characteristics of a CI engine fuelled with diesel, biodiesel, and blends–a review. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-18 |
[1] | Jinlong Liu, Chenye Wang, Xingrui Wang, Chen Zhao, Huiquan Li, Ganyu Zhu, Jianbo Zhang. Reconstruction and recovery of anatase TiO2 from spent selective catalytic reduction catalyst by NaOH hydrothermal method[J]. 中国化学工程学报, 2023, 60(8): 53-60. |
[2] | Yifan Jiang, Bingqi Xie, Jisong Zhang. Highly reactive and reusable heterogeneous activated carbons-based palladium catalysts for Suzuki-Miyaura reaction[J]. 中国化学工程学报, 2023, 60(8): 165-172. |
[3] | Peipei Ai, Huiqing Jin, Jie Li, Xiaodong Wang, Wei Huang. Ultra-stable Cu-based catalyst for dimethyl oxalate hydrogenation to ethylene glycol[J]. 中国化学工程学报, 2023, 60(8): 186-193. |
[4] | Xiaolin Guo, Zhaoyang Zhang, Pengfei Xing, Shuai Wang, Yibing Guo, Yanxin Zhuang. Kinetic mechanism of copper extraction from methylchlorosilane slurry residue using hydrogen peroxide as oxidant[J]. 中国化学工程学报, 2023, 60(8): 228-234. |
[5] | Yuehua Liu, Lili Chen, Shoujun Liu, Song Yang, Ju Shangguan. Role of iron-based catalysts in reducing NOx emissions from coal combustion[J]. 中国化学工程学报, 2023, 59(7): 1-8. |
[6] | Xun Tao, Fan Zhou, Xinlei Yu, Songling Guo, Yunfei Gao, Lu Ding, Guangsuo Yu, Zhenghua Dai, Fuchen Wang. Effect of carbon dioxide on oxy-fuel combustion of hydrogen sulfide: An experimental and kinetic modeling[J]. 中国化学工程学报, 2023, 59(7): 105-117. |
[7] | Fei Li, Xuemei Wang, Pengze Zhang, Qinqin Wang, Mingyuan Zhu, Bin Dai. Nitrogen and phosphorus co-doped activated carbon induces high density Cu+ active center for acetylene hydrochlorination[J]. 中国化学工程学报, 2023, 59(7): 193-199. |
[8] | Junyang Liu, Luming Wang, Yuhang Bian, Chunshan Li, Zengxi Li, Jie Li. Liquid-phase esterification of methacrylic acid with methanol catalyzed by cation-exchange resin in a fixed bed reactor: Experimental and kinetic studies[J]. 中国化学工程学报, 2023, 58(6): 1-10. |
[9] | Wei Wang, Romain Lemaire, Ammar Bensakhria, Denis Luart. Thermogravimetric analysis and kinetic modeling of the co-pyrolysis of a bituminous coal and poplar wood[J]. 中国化学工程学报, 2023, 58(6): 53-68. |
[10] | Qunfeng Zhang, Bingcheng Li, Yuan Zhou, Deshuo Zhang, Chunshan Lu, Feng Feng, Jinghui Lv, Qingtao Wang, Xiaonian Li. Regulation of the selective hydrogenation performance of sulfur-doped carbon-supported palladium on chloronitrobenzene[J]. 中国化学工程学报, 2023, 58(6): 69-75. |
[11] | Bing Liu, Yingjiao Li, Moses Arowo, Guangwen Chu, Yong Luo, Liangliang Zhang, Haikui Zou, Baochang Sun. Sulfonation of 1, 4-diaminoanthraquinone leuco by chlorosulfonic acid: Kinetics and process intensification[J]. 中国化学工程学报, 2023, 58(6): 163-169. |
[12] | Xinyu Liu, Hongliang Sheng, Song He, Chunhua Du, Yuansheng Ma, Chichi Ruan, Chunxiang He, Huaming Dai, Yajun Huang, Yuelei Pan. Insight into pyrolysis of hydrophobic silica aerogels: Kinetics, reaction mechanism and effect on the aerogels[J]. 中国化学工程学报, 2023, 58(6): 266-281. |
[13] | Guangyuan Chen, Tong Zhou, Meng Zhang, Zhongxiang Ding, Zhikun Zhou, Yuanhui Ji, Haiying Tang, Changsong Wang. Effects of heavy metal ions Cu2+/Pb2+/Zn2+ on kinetic rate constants of struvite crystallization[J]. 中国化学工程学报, 2023, 57(5): 10-16. |
[14] | Jiajia Chen, Xinyu Lu, Dandan Wang, Pengcheng Xiu, Xiaoli Gu. Effective depolymerization of alkali lignin using an attapulgite-Ce0.75Zr0.25O2(ATP-CZO)-supported cobalt catalyst in ethanol/isopropanol media[J]. 中国化学工程学报, 2023, 57(5): 50-62. |
[15] | Linlin Su, Meijun Chen, Li Gong, Hua Yang, Chao Chen, Jun Wu, Ling Luo, Gang Yang, Lulu Long. Boost activation of peroxymonosulfate by iron doped K2-xMn8O16: Mechanism and properties[J]. 中国化学工程学报, 2023, 57(5): 88-97. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||