[1] D. Tarkowská, M. Strnad, Isoprenoid-derived plant signaling molecules: biosynthesis and biological importance, Planta 247 (2018) 1051–1066. [2] D. Tholl, Biosynthesis and biological functions of terpenoids in plants, Adv. Biochem. Eng. Biotechnol. 148 (2015) 63–106. [3] Wang G., Tang W., Bidigare R.R., in: Zhang L., Demain A.L. (Eds.), Terpenoids as therapeutic drugs and pharmaceutical agents, Natural products: drug discovery and therapeutic medicine, Humana Press, Totowa, NJ, 2005, pp. 197 –227. [4] S.D. Tetali, Terpenes and isoprenoids: a wealth of compounds for global use, Planta 249 (2019) 1–8. [5] D.A. Bochar, C.V. Stauffacher, V.W. Rodwell, Sequence comparisons reveal two classes of 3-hydroxy-3-methylglutaryl coenzyme A reductase, Mol. Genet. Metab. 66 (1999) 122–127. [6] T. Kuzuyama, Mevalonate and nonmevalonate pathways for the biosynthesis of isoprene units, Biosci. Biotechnol. Biochem. 66 (2002) 1619–1627. [7] B.M. Lange, T. Rujan, W. Martin, R. Croteau, Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genome, Proc. Natl. Acad. Sci. USA 97 (2000) 13172–13177. [8] G. Scalcinati, S. Partow, V. Siewers, M. Schalk, L. Daviet, J. Nielsen, Combined metabolic engineering of precursor and co-factor supply to increase asantalene production by Saccharomyces cerevisiae, Microb. Cell Factories 11 (2012) 117–132. [9] K. Cankar, A. van Houwelingen, M. Goedbloed, R. Renirie, R.M. de Jong, H. Bouwmeester, D. Bosch, T. Sonke, J. Beekwilder, Valencene oxidase CYP706M1 from Alaska cedar (Callitropsis nootkatensis), FEBS Lett. 588 (2014) 1001–1007. [10] X. Zhao, F. Shi, W. Zhan, Overexpression of ZWF1 and POS5 improves carotenoid biosynthesis in recombinant Saccharomyces cerevisiae, Lett. Appl. Microbiol. 61 (2015) 354–360. [11] X. Lan, W. Yuan, M. Wang, H. Xiao, Efficient biosynthesis of antitumor ganoderic acid HLDOA using a dual tunable system for optimizing the expression of CYP5150L8 and a Ganoderma P450 reductase, Biotechnol. Bioeng. 116 (2019) 3301–3311. [12] J.L. de la Fuente, M. Rodríguez-Sáiz, C. Schleissner, B. Díez, E. Peiro, J.L. Barredo, High-titer production of astaxanthin by the semi-industrial fermentation of Xanthophyllomyces dendrorhous, J. Biotechnol. 148 (2010) 144–146. [13] J.Y. Jeon, J.-S. Kwon, S.T. Kang, B.-R. Kim, Y. Jung, J.G. Han, J.H. Park, J.K. Hwang, Optimization of culture media for large-scale lutein production by heterotrophic Chlorella vulgaris, Biotechnol. Prog. 30 (2014) 736–743. [14] M.A. Corsello, N.K. Garg, Synthetic chemistry fuels interdisciplinary approaches to the production of artemisinin, Nat. Prod. Rep. 32 (2015) 359–366. [15] H.-W. Yen, Z. Zhang, Effects of dissolved oxygen level on cell growth and total lipid accumulation in the cultivation of Rhodotorula glutinis, J. Biosci. Bioeng. 112 (2011) 71–74. [16] H. Xiao, J.-J. Zhong, Production of useful terpenoids by higher-fungus cell factory and synthetic biology approaches, Trends Biotechnol. 34 (2016) 242–255. [17] A.W. Munro, H.M. Girvan, A.E. Mason, A.J. Dunford, K.J. McLean, What makes a P450 tick?, Trends Biochem. Sci. 38 (2013) 140–150. [18] B.C. Stark, K.R. Pagilla, K.L. Dikshit, Recent applications of Vitreoscilla hemoglobin technology in bioproduct synthesis and bioremediation, Appl. Microbiol. Biotechnol. 99 (2015) 1627–1636. [19] R.S. Zitomer, C.V. Lowry, Regulation of gene expression by oxygen in Saccharomyces cerevisiae, Microbiol. Rev. 56 (1992) 1–11. [20] P.M.F. Sousa, M.A.M. Videira, A. Bohn, B.L. Hood, T.P. Conrads, L.F. Goulao, A. M.P. Melo, The aerobic respiratory chain of Escherichia coli: from genes to supercomplexes, Microbiology 158 (2012) 2408–2418. [21] B.M. Barker, K. Kroll, M. Vödisch, A. Mazurie, O. Kniemeyer, R.A. Cramer, Transcriptomic and proteomic analyses of the Aspergillus fumigatus hypoxia response using an oxygen-controlled fermenter, BMC Genomics 13 (2012) 62. [22] T. Roukas, The role of oxidative stress on carotene production by Blakeslea trispora in submerged fermentation, Crit. Rev. Biotechnol. 36 (2016) 424–433. [23] J.R. Lenihan, H. Tsuruta, D. Diola, N.S. Renninger, R. Regentin, Developing an industrial artemisinic acid fermentation process to support the cost-effective production of antimalarial artemisinin-based combination therapies, Biotechnol. Prog. 24 (2008) 1026–1032. [24] S. Tippmann, G. Scalcinati, V. Siewers, J. Nielsen, Production of farnesene and santalene by Saccharomyces cerevisiae using fed-batch cultivations with RQcontrolled feed, Biotechnol. Bioeng. 113 (2016) 72–81. [25] A. Navia-Osorio, H. Garden, R.M. Cusidó, J. Palazón, A.W. Alfermann, M.T. Piñol, Production of paclitaxel and baccatin III in a 20-L airlift bioreactor by a cell suspension of Taxus wallichiana, Planta Med. 68 (2002) 336–340. [26] W.-X. Zhang, J.-J. Zhong, Effect of oxygen concentration in gas phase on sporulation and individual ganoderic acids accumulation in liquid static culture of Ganoderma lucidum, J. Biosci. Bioeng. 109 (2010) 37–40. [27] Y.-J. Tang, J.-J. Zhong, Role of oxygen supply in submerged fermentation of Ganoderma lucidum for production of Ganoderma polysaccharide and ganoderic acid, Enzyme Microb. Technol. 32 (2003) 478–484. [28] Q.-H. Fang, J.-J. Zhong, Two-stage culture process for improved production of ganoderic acid by liquid fermentation of higher fungus Ganoderma lucidum, Biotechnol. Prog. 18 (2002) 51–54. [29] J. Feng, N. Feng, Y. Yang, F. Liu, J. Zhang, W. Jia, C.-C. Lin, Simple and reproducible two-stage agitation speed control strategy for enhanced triterpene production by Lingzhi or Reishi medicinal mushrooms, Ganoderma lucidum ACCC G0119 (higher basidiomycetes) based on submerged liquid fermentation, Int. J. Med. Mushrooms 17 (2015) 1151–1159. [30] H.-J. Chen, Y.-S. Chen, S.-L. Liu, B.-K. Liou, C.-S. Chen, The influence of submerged fermentation of Inonotus obliquus with control atmosphere treatment on enhancing bioactive ingredient contents, Appl. Biochem. Biotechnol. 191 (2020) 412–425. [31] Y.-S. Liu, J.-Y. Wu, K. Ho, Characterization of oxygen transfer conditions and their effects on Phaffia rhodozyma growth and carotenoid production in shake-flask cultures, Biochem. Eng. J. 27 (2006) 331–335. [32] Y.S. Liu, J.Y. Wu, Use of n-hexadecane as an oxygen vector to improve Phaffia rhodozyma growth and carotenoid production in shake-flask cultures, J. Appl. Microbiol. 101 (2006) 1033–1038. [33] K. Nanou, T. Roukas, Stimulation of the biosynthesis of carotenes by oxidative stress in Blakeslea trispora induced by elevated dissolved oxygen levels in the culture medium, Bioresour. Technol. 102 (2011) 8159–8164. [34] K. Nanou, T. Roukas, E. Papadakis, Oxidative stress and morphological changes in Blakeslea trispora induced by enhanced aeration during carotene production in a bubble column reactor, Biochem. Eng. J. 54 (2011) 172–177. [35] F. Rostami, S.H. Razavi, A.A. Sepahi, S.M.T. Gharibzahedi, Canthaxanthin biosynthesis by Dietzia natronolimnaea HS-1: effects of inoculation and aeration rate, Braz. J. Microbiol. 45 (2014) 447–456. [36] F. Mantzouridou, T. Roukas, B. Achatz, Effect of oxygen transfer rate on bcarotene production from synthetic medium by Blakeslea trispora in shake flask culture, Enzyme Microb. Technol. 37 (2005) 687–694. [37] X. Hu, X. Ma, P. Tang, Q. Yuan, Improved b-carotene production by oxidative stress in Blakeslea trispora induced by liquid paraffin, Biotechnol. Lett. 35 (2013) 559–563. [38] A. Manowattana, C. Techapun, M. Watanabe, T. Chaiyaso, Bioconversion of biodiesel-derived crude glycerol into lipids and carotenoids by an oleaginous red yeast Sporidiobolus pararoseus KM281507 in an airlift bioreactor, J. Biosci. Bioeng. 125 (2018) 59–66. [39] F. Xu, Q.-P. Yuan, Y. Zhu, Improved production of lycopene and b-carotene by Blakeslea trispora with oxygen-vectors, Process Biochem. 42 (2007) 289–293. [40] Z. Yang, J. Cheng, K. Li, J. Zhou, K. Cen, Optimizing gas transfer to improve growth rate of Haematococcus pluvialis in a raceway pond with chute and oscillating baffles, Bioresour. Technol. 214 (2016) 276–283. [41] Y. Xie, J. Li, S.-H. Ho, R. Ma, X. Shi, L. Liu, J. Chen, Pilot-scale cultivation of Chlorella sorokiniana FZU60 with a mixotrophy/photoautotrophy two-stage strategy for efficient lutein production, Bioresour. Technol. 314 (2020) 123767, https://doi.org/10.1016/j.biortech.2020.123767. [42] D. Caşcaval, A.-I. Galaction, M. Turnea, Comparative analysis of oxygen transfer rate distribution in stirred bioreactor for simulated and real fermentation broths, J. Ind. Microbiol. Biotechnol. 38 (2011) 1449–1466. [43] F. Mantzouridou, T. Roukas, P. Kotzekidou, Effect of the aeration rate and agitation speed on b-carotene production and morphology of Blakeslea trispora in a stirred tank reactor: mathematical modeling, Biochem. Eng. J. 10 (2002) 123–135. [44] W. Wang, L. Yu, Effects of oxygen supply on growth and carotenoids accumulation by Xanthophyllomyces dendrorhous, Z. Naturforsch. C 64 (2009) 853–858. [45] E. Czarnotta, M. Dianat, M. Korf, F. Granica, J. Merz, J. Maury, S.A. Baallal Jacobsen, J. Förster, B.E. Ebert, L.M. Blank, Fermentation and purification strategies for the production of betulinic acid and its lupane-type precursors in Saccharomyces cerevisiae, Biotechnol. Bioeng. 114 (2017) 2528–2538. [46] I. Belo, R. Pinheiro, M. Mota, Fed-batch cultivation of Saccharomyces cerevisiae in a hyperbaric bioreactor, Biotechnol. Prog. 19 (2003) 665–671. [47] W.-C. Liu, T. Gong, Q.-H. Wang, X. Liang, J.-J. Chen, P. Zhu, Scaling-up fermentation of Pichia pastoris to demonstration-scale using new methanolfeeding strategy and increased air pressure instead of pure oxygen supplement, Sci. Rep. 6 (2016) 18439. [48] S. Leupold, G. Hubmann, A. Litsios, A.C. Meinema, V. Takhaveev, A. Papagiannakis, B. Niebel, G. Janssens, D. Siegel, M. Heinemann, Saccharomyces cerevisiae goes through distinct metabolic phases during its replicative lifespan, Elife 8 (2019) e41046. [49] Y.-J. Tang, J.-J. Zhong, Scale-up of a liquid static culture process for hyperproduction of ganoderic acid by the medicinal mushroom Ganoderma lucidum, Biotechnol. Prog. 19 (2003) 1842–1846. [50] W.-J. Wu, A.-H. Zhang, C. Peng, L.-J. Ren, P. Song, Y.-D. Yu, H. Huang, X.-J. Ji, An efficient multi-stage fermentation strategy for the production of microbial oil rich in arachidonic acid in Mortierella alpina, Bioresour. Bioprocess 4 (2017) 8. [51] P. Zhu, S. Dong, S. Li, X. Xu, H. Xu, Improvement of welan gum biosynthesis and transcriptional analysis of the genes responding to enhanced oxygen transfer by oxygen vectors in Sphingomonas sp, Biochem. Eng. J. 90 (2014) 264–271. [52] A.-I. Galaction, S. Camarut, D. Cascaval, R. Tudose, Distribution of oxygen transfer rate in stirred bioreactors with simulated broths, Environ. Eng. Manag. J. 7 (2008) 199–211. [53] F.T. Mantzouridou, E. Naziri, Scale translation from shaken to diffused bubble aerated systems for lycopene production by Blakeslea trispora under stimulated conditions, Appl. Microbiol. Biotechnol. 101 (2017) 1845–1856. [54] T.L. Sivy, R. Fall, T.N. Rosenstiel, Evidence of isoprenoid precursor toxicity in Bacillus subtilis, Biosci. Biotechnol. Biochem. 75 (2011) 2376–2383. [55] L. Sun, S. Kwak, Y.-S. Jin, Vitamin A production by engineered Saccharomyces cerevisiae from xylose via two-phase in situ extraction, ACS Synth. Biol. 8 (2019) 2131–2140. [56] M. Montibus,L.Pinson-Gadais,F.Richard-Forget,C.Barreau, N.Ponts,Coupling of transcriptional response to oxidative stress and secondary metabolism regulation in filamentous fungi, Crit. Rev. Microbiol. 41 (2015) 295–308. [57] E. González-Burgos, M.P. Gómez-Serranillos, Terpene compounds in nature: a review of their potential antioxidant activity, Curr. Med. Chem. 19 (2012) 5319–5341. [58] H.-B. Wang, J. Luo, X.-Y. Huang, M.-B. Lu, L.-J. Yu, Oxidative stress response of Blakeslea trispora induced by H2O2 during b-carotene biosynthesis, J. Ind. Microbiol. Biotechnol. 41 (2014) 555–561. [59] C.-G. Wu, J.-L. Tian, R. Liu, P.-F. Cao, T.-J. Zhang, A. Ren, L. Shi, M.-W. Zhao, Ornithine decarboxylase-mediated production of putrescine influences ganoderic acid biosynthesis by regulating reactive oxygen species in Ganoderma lucidum, Appl. Environ. Microbiol. 83 (2017) e01289–17. [60] D. Mu, C. Li, X. Zhang, X. Li, L. Shi, A. Ren, M. Zhao, Functions of the nicotinamide adenine dinucleotide phosphate oxidase family in Ganoderma lucidum: an essential role in ganoderic acid biosynthesis regulation, hyphal branching, fruiting body development, and oxidative-stress resistance, Environ. Microbiol. 16 (2014) 1709–1728. [61] C. Li, L. Shi, D. Chen, A. Ren, T. Gao, M. Zhao, Functional analysis of the role of glutathione peroxidase (GPx) in the ROS signaling pathway, hyphal branching and the regulation of ganoderic acid biosynthesis in Ganoderma lucidum, Fungal Genet. Biol. 82 (2015) 168–180. [62] J. Liu, Y. Zhu, G. Du, J. Zhou, J. Chen, Response of Saccharomyces cerevisiae to Dlimonene-induced oxidative stress, Appl. Microbiol. Biotechnol. 97 (2013) 6467–6475. [63] W. Xiao, R.-S. Wang, D.E. Handy, J. Loscalzo, NAD(H) and NADP(H) redox couples and cellular energy metabolism, Antioxid. Redox Signal 28 (2018) 251–272. [64] G.N. Bennett, K.-Y. San, Strategies for manipulation of oxygen utilization by the electron transfer chain in microbes for metabolic engineering purposes, J. Ind. Microbiol. Biotechnol. 44 (2017) 647–658. [65] C. Zhao, G. Song, C. Fu, Y. Dong, H. Xu, H. Zhang, L.J. Yu, A systematic approach to expound the variations in taxane production under different dissolved oxygen conditions in Taxus chinensis cells, Plant Cell Rep. 35 (2016) 541–559. [66] M.D. Rolfe, A. Ter Beek, A.I. Graham, E.W. Trotter, H.M.S. Asif, G. Sanguinetti, J. T. de Mattos, R.K. Poole, J. Green, Transcript profiling and inference of Escherichia coli K-12 ArcA activity across the range of physiologically relevant oxygen concentrations, J. Biol. Chem. 286 (2011) 10147–10154. [67] D. Nelson, D. Werck-Reichhart, A P450-centric view of plant evolution, Plant J. 66 (2011) 194–211. [68] I.L.M.M. Tack, P. Nimmegeers, S. Akkermans, F. Logist, J.F.M. Van Impe, A lowcomplexity metabolic network model for the respiratory and fermentative metabolism of Escherichia coli, PLoS One 13 (2018) e0202565. [69] T.P. Korman, B. Sahachartsiri, D. Li, J.M. Vinokur, D. Eisenberg, J.U. Bowie, A synthetic biochemistry system for the in vitro production of isoprene from glycolysis intermediates, Protein Sci. 23 (2014) 576–585. [70] J. Lombard, D. Moreira, Origins and early evolution of the mevalonate pathway of isoprenoid biosynthesis in the three domains of life, Mol. Biol. Evol. 28 (2011) 87–99. [71] H. Alper, K. Miyaoku, G. Stephanopoulos, Characterization of lycopeneoverproducing E. coli strains in high cell density fermentations, Appl. Microbiol. Biotechnol. 72 (2006) 968–974. [72] Z. Wang, J. Sun, Q. Yang, J. Yang, Metabolic engineering Escherichia coli for the production of lycopene, Molecules 25 (14) (2020) 3136. [73] P.S. Tsai, M. Nägeli, J.E. Bailey, Intracellular expression of Vitreoscilla hemoglobin modifies microaerobic Escherichia coli metabolism through elevated concentration and specific activity of cytochrome o, Biotechnol. Bioeng. 49 (1996) 151–160. [74] S. Alexeeva, K.J. Hellingwerf, M.J. Teixeira de Mattos, Quantitative assessment of oxygen availability: perceived aerobiosis and its effect on flux distribution in the respiratory chain of Escherichia coli, J. Bacteriol. 184 (2002) 1402–1406. [75] S. Alexeeva, B. de Kort, G. Sawers, K.J. Hellingwerf, M.J. de Mattos, Effects of limited aeration and of the ArcAB system on intermediary pyruvate catabolism in Escherichia coli, J. Bacteriol. 182 (2000) 4934–4940. [76] W.-X. Zhang, Y.-J. Tang, J.-J. Zhong, Impact of oxygen level in gaseous phase on gene transcription and ganoderic acid biosynthesis in liquid static cultures of Ganoderma lucidum, Bioprocess Biosyst. Eng. 33 (2010) 683–690. [77] T. Hagi, M. Kobayashi, M. Nomura, Aerobic conditions increase isoprenoid biosynthesis pathway gene expression levels for carotenoid production in Enterococcus gilvus, FEMS Microbiol. Lett. 362 (2015) fnv075. [78] T. Okamoto, M. Mitsuhashi, I. Fujita, R.K. Sindhu, Y. Kikkawa, Induction of cytochrome P450 1A1 and 1A2 by hyperoxia, Biochem. Biophys. Res. Commun. 197 (1993) 878–885. [79] J. Li, Y. Zhang, Modulating betulinic acid production in Saccharomyces cerevisiae by managing theintracellular supplies of the co-factor NADPH and oxygen, J. Biosci. Bioeng. 119 (2015) 77–81. [80] T. Hao, Z. Xie, M. Wang, L. Liu, Y. Zhang, W. Wang, Z. Zhang, X. Zhao, P. Li, Z. Guo, S. Gao, C. Lou, G. Zhang, J. Merritt, G.P. Horsman, Y. Chen, An anaerobic bacterium host system for heterologous expression of natural product biosynthetic gene clusters, Nat. Commun. 10 (2019) 3665. [81] B.A. Diner, J. Fan, M.C. Scotcher, D.H. Wells, G.M. Whited, Synthesis of heterologous mevalonic acid pathway enzymes in Clostridium ljungdahlii for the conversion of fructose and of syngas to mevalonate and isoprene, Appl. Environ.Microbiol.84(2017) e01723-17. [82] T. Härtner, K.L. Straub, E. Kannenberg, Occurrence of hopanoid lipids in anaerobic Geobacter species, FEMS Microbiol. Lett. 243 (2005) 59–64. [83] P.-C. Lin, H.B. Pakrasi, Engineering cyanobacteria for production of terpenoids, Planta 249 (2019) 145–154. [84] A. Melis, Photosynthesis-to-fuels: from sunlight to hydrogen, isoprene, and botryococcene production, Energy Environ. Sci. 5 (2012) 5531–5539. [85] E. Eroglu, S. Okada, A. Melis, Hydrocarbon productivities in different Botryococcus strains: comparative methods in product quantification, J. Appl. Phycol. 23 (2011) 763–775. [86] M. Huang, J. Cheng, P. Chen, G. Zheng, D. Wang, Y. Hu, Efficient production of succinic acid in engineered Escherichia coli strains controlled by anaerobically-induced nirB promoter using sweet potato waste hydrolysate, J. Environ. Manage. 237 (2019) 147–154. [87] H. Wu, H. Wang, J. Chen, G.-Q. Chen, Effects of cascaded vgb promoters on poly(hydroxybutyrate) (PHB) synthesis by recombinant Escherichia coli grown micro-aerobically, Appl. Microbiol. Biotechnol. 98 (2014) 10013–10021. [88] J. Willett, J.L. Smart, C.E. Bauer, RegA control of bacteriochlorophyll and carotenoid synthesis in Rhodobacter capsulatus, J. Bacteriol. 189 (2007) 7765–7773. [89] M. Kargeti, K.V. Venkatesh, Effect of global transcriptional regulators on kinetic behavior of Escherichia coli under anaerobic fermentation conditions, Arch. Microbiol. 200 (2018) 979–987. [90] J. Li, X. Zhu, J. Chen, D. Zhao, X. Zhang, C. Bi, Construction of a novel anaerobic pathway in Escherichia coli for propionate production, BMC Biotechnol. 17 (2017) 38. [91] Y.L. Suen, H. Tang, J. Huang, F. Chen, Enhanced production of fatty acids and astaxanthin in Aurantiochytrium sp. by the expression of Vitreoscilla hemoglobin, J. Agric. Food Chem. 62 (2014) 12392–12398. [92] L. Tao, N. Sedkova, H. Yao, R.W. Ye, P.L. Sharpe, Q. Cheng, Expression of bacterial hemoglobin genes to improve astaxanthin production in a methanotrophic bacterium Methylomonas sp, Appl. Microbiol. Biotechnol. 74 (2007) 625–633. [93] A.D. Frey, P.T. Kallio, Bacterial hemoglobins and flavohemoglobins: versatile proteins and their impact on microbiology and biotechnology, FEMS Microbiol. Rev. 27 (2003) 525–545. [94] A.L. Meadows, K.M. Hawkins, Y. Tsegaye, E. Antipov, Y. Kim, L. Raetz, R.H. Dahl, A. Tai, T. Mahatdejkul-Meadows, L. Xu, L. Zhao, M.S. Dasika, A. Murarka, J. Lenihan, D. Eng, J.S. Leng, C.-L. Liu, J.W. Wenger, H. Jiang, L. Chao, P. Westfall, J. Lai, S. Ganesan, P. Jackson, R. Mans, D. Platt, C.D. Reeves, P.R. Saija, G. Wichmann, V.F. Holmes, K. Benjamin, P.W. Hill, T.S. Gardner, A.E. Tsong, Rewriting yeast central carbon metabolism for industrial isoprenoid production, Nature 537 (2016) 694–697. [95] S. Kobayashi, H. Kawaguchi, T. Shirai, K. Ninomiya, K. Takahashi, A. Kondo, Y. Tsuge, Automatic redirection of carbon flux between glycolysis and pentose phosphate pathway using an oxygen-responsive metabolic switch in Corynebacterium glutamicum, ACS Synth. Biol. 9 (2020) 814–826. [96] X. Hua, X. Zhou, G. Du, Y. Xu, Resolving the formidable barrier of oxygen transferring rate (OTR) in ultrahigh-titer bioconversion/biocatalysis by a sealed-oxygen supply biotechnology (SOS), Biotechnol. Biofuels 13 (2020) 1. [97] Z. Wang, X. Li, C. Yu, S. Lu, S. Xiong, Y. Yuan, Continuous self-cycling fermentation leads to economical lycopene production by Saccharomyces cerevisiae, Front. Bioeng. Biotechnol. 8 (2020) 420. [98] W. Vongsangnak, A. Kingkaw, J. Yang, Y. Song, K. Laoteng, Dissecting metabolic behavior of lipid over-producing strain of Mucor circinelloides through genome-scale metabolic network and multi-level data integration, Gene 670 (2018) 87–97. [99] Y.-Y. Huang, X.-X. Jian, Y.-B. Lv, K.-Q. Nian, Q. Gao, J. Chen, L.-J. Wei, Q. Hua, Enhanced squalene biosynthesis in Yarrowia lipolytica based on metabolically engineered acetyl-CoA metabolism, J. Biotechnol. 281 (2018) 106–114. [100] B. Shi, T. Ma, Z. Ye, X. Li, Y. Huang, Z. Zhou, Y. Ding, Z. Deng, T. Liu, Systematic metabolic engineering of Saccharomyces cerevisiae for lycopene overproduction, J. Agric. Food Chem. 67 (2019) 11148–11157. [101] X. Song, H. Xiao, S. Luo, X. Wang, W. Wang, S. Lin, Biosynthesis of squalenetype triterpenoids in Saccharomyces cerevisiae by expression of CYP505D13 from Ganoderma lucidum, Bioresour. Bioprocess 6 (2019) 19. |