[1] Q. Wang, J. Luo, Z. Zhong and A. Borgna, CO2 Capture by Solid-Adsorbents and Their Applications: Current Status and New Trends, Energy Environ. Sci., 4 (2011) 42-55 [2] E. S. Sanz-Pérez, C. R. Murdock, S. A. Didas and C. W. Jones, Direct Capture of CO2 from Ambient Air, Chem. Rev., 116 (2016) 11840-11876 [3] Z. Zhang, Z.-Z. Yao, S. Xiang and B. Chen, Perspective of microporous metal-organic frameworks for CO2 capture and separation, Energy Environ. Sci., 7 (2014) 2868-2899 [4] M. He, Y. Sun and B. Han, Green Carbon Science: Scientific Basis for Integrating Carbon Resource Processing, Utilization, and Recycling, Angew. Chem., Int. Ed., 52 (2013) 9620-9633 [5] S. Chu, Carbon Capture and Sequestration, Science, 325 (2009) 1599 [6] J. W. Maina, C. Pozo-Gonzalo, L. Kong, J. Schütz, M. Hill and L. F. Dumée, Metal organic framework based catalysts for CO2 conversion, Mater. Horiz., 4 (2017) 345-361 [7] H.-Q. Xu, J. Hu, D. Wang, Z. Li, Q. Zhang, Y. Luo, S.-H. Yu and H.-L. Jiang, Visible-Light Photoreduction of CO2 in a Metal-Organic Framework: Boosting Electron-Hole Separation via Electron Trap States, J. Am. Chem. Soc., 137 (2015) 13440-13443 [8] H. He, J. A. Perman, G. Zhu and S. Ma, Metal-Organic Frameworks for CO2 Chemical Transformations, Small, 12 (2016) 6309-6324 [9] H. J. Herzog, Scaling up carbon dioxide capture and storage: From megatons to gigatons, Energy Econ., 33 (2011) 597-604 [10] F. M. Orr Jr, CO2 capture and storage: are we ready? Energy Environ. Sci., 2 (2009) 449-458 [11] B. Mousavi, S. Chaemchuen, B. Moosavi, Z. Luo, N. Gholampour and F. Verpoort, Bioconjugatable, PEGylated hydroporphyrins for photochemistry and photomedicine. Narrow-band, red-emitting chlorins, New J. Chem., 40 (2016) 5170-5176 [12] Z. R. Jiang, H. Wang, Y. Hu, J. Lu and H. L. Jiang, Polar Group and Defect Engineering in a Metal–Organic Framework: Synergistic Promotion of Carbon Dioxide Sorption and Conversion, ChemSusChem, 8 (2015) 878-885 [13] X. Wang, W.-Y. Gao, Z. Niu, L. Wojtas, J. A. Perman, Y.-S. Chen, Z. Li, B. Aguila and S. Ma, A Metal-Metalloporphyrin Framework based on an Octatopic Porphyrin Ligand for Chemical Fixation of CO2 with Aziridines, Chem. Commun., 54 (2018) 1170-1173 [14] L.-B. Sun, A.-G. Li, X.-D. Liu, X.-Q. Liu, D. Feng, W. Lu, D. Yuan and H.-C. Zhou, Facile fabrication of cost-effective porous polymer networks for highly selective CO2 capture, J. Mater. Chem. A, 3 (2015) 3252-3256 [15] M. Ding, R. W. Flaig, H.-L. Jiang and O. M. Yaghi, Carbon capture and conversion using metal–organic frameworks and MOF-based materials, Chem. Soc. Rev., 48 (2019) 2783-2828 [16] B. E. Gurkan, J. C. de la Fuente, E. M. Mindrup, L. E. Ficke, B. F. Goodrich, E. A. Price, W. F. Schneider and J. F. Brennecke, Equimolar CO2 Absorption by Anion-Functionalized Ionic Liquids, J. Am. Chem. Soc., 132 (2010) 2116-2117 [17] E. D. Bates, R. D. Mayton, I. Ntai and J. H. Davis, CO2 capture by a Task-Specific Ionic Liquid, J. Am. Chem. Soc., 124 (2002) 926-927 [18] I. Niedermaier, M. Bahlmann, C. Papp, C. Kolbeck, W. Wei, S. Krick Calderón, M. Grabau, P. S. Schulz, P. Wasserscheid and H.-P. Steinrück, Carbon Dioxide Capture by an Amine Functionalized Ionic Liquid: Fundamental Differences of Surface and Bulk Behavior, J. Am. Chem. Soc., 136 (2013) 436-441 [19] L. G. Sánchez, G. Meindersma and A. De Haan, Kinetics of absorption of CO2 in amino-functionalized ionic liquids, Chem. Eng. J., 166 (2011) 1104-1115 [20] K. Yamaguchi, K. Ebitani, T. Yoshida, H. Yoshida and K. Kaneda, Mg/Al Mixed Oxides as Highly Active Acid? Base Catalysts for Cycloaddition of Carbon Dioxide to Epoxides, J. Am. Chem. Soc., 121 (1999) 4526-4527 [21] R. L. Paddock and S. T. Nguyen, Chemical CO2 Fixation: Cr(III) Salen Complexes as Highly Efficient Catalysts for the Coupling of CO2 and Epoxides, J. Am. Chem. Soc., 123 (2001) 11498-11499 [22] L. Zhang, Z.-J. Zhao, T. Wang and J. Gong, Nano-designed semiconductors for electro-and photoelectro-catalytic conversion of carbon dioxide, Chem. Soc. Rev., 47 (2018) 5423-5443 [23] C. Yoo, Y.-E. Kim and Y. Lee, Selective Transformation of CO2 to CO at a Single Nickel Center, Acc. Chem. Res., 51 (2018) 1144-1152 [24] D. M. Weekes, D. A. Salvatore, A. Reyes, A. Huang and C. P. Berlinguette, Electrolytic CO2 Reduction in a Flow Cell, Acc. Chem. Res., 51 (2018) 910-918 [25] D. Voiry, H. S. Shin, K. P. Loh and M. Chhowalla, Low-dimensional catalysts for hydrogen evolution and CO2 reduction, Nat. Rev. Chem., 2 (2018) 0105 [26] L. Han, S.-W. Park and D.-W. Park, Silica grafted imidazolium-based ionic liquids: efficient heterogeneous catalysts for chemical fixation of CO2 to a cyclic carbonate, Energy Environ. Sci., 2 (2009) 1286-1292 [27] X. Zheng, S. Luo, L. Zhang and J.-P. Cheng, Magnetic nanoparticle supported ionic liquid catalysts for CO2 cycloaddition reactions, Green Chem, 11 (2009), 455-458 [28] Y. Xie, Z. Zhang, T. Jiang, J. He, B. Han, T. Wu and K. Ding, CO2 Cycloaddition Reactions Catalyzed by an Ionic Liquid Grafted onto a Highly Cross‐Linked Polymer Matrix, Angew. Chem., Int. Ed., 46 (2007) 7255-7258 [29] X. Wang, Y. Zhou, Z. Guo, G. Chen, J. Li, Y. Shi, Y. Liu and J. Wang, Heterogeneous conversion of CO2 into cyclic carbonates at ambient pressure catalyzed by ionothermal-derived meso-macroporous hierarchical poly(ionic liquid)s, Chem. Sci., 6 (2015) 6916-6924 [30] Z. Niu, W. D. B. Gunatilleke, Q. Sun, P. C. Lan, J. Perman, J.-G. Ma, Y. Cheng, B. Aguila and S. Ma, Metal-organic framework anchored with a Lewis pair as a new paradigm for catalysis, Chem, 4 (2018) 2587-2599 [31] H. She, X. Ma and G. Chang, Highly efficient and selective removal of N-heterocyclic aromatic contaminants from liquid fuels in a Ag(I) functionalized metal-organic framework: Contribution of multiple interaction sites, J. Colloid Interface Sci., 518 (2018) 149-155 [32] S. Wang and X. Wang, Imidazolium Ionic Liquids, Imidazolylidene Heterocyclic Carbenes, and Zeolitic Imidazolate Frameworks for CO2 Capture and Photochemical Reduction, Angew. Chem., Int. Ed., 55 (2016) 2308–2320 [33] G. G. Chang, X. C. Ma, Y. X. Zhang, L. Y. Wang, G. Tian, J. W. Liu, J. Wu, Z. Y. Hu, X. Y. Yang and B. Chen, Construction of Hierarchical Metal–Organic Frameworks by Competitive Coordination Strategy for Highly Efficient CO2 Conversion, Adv. Mater., 31 (2019) 1904969 [34] Y. Liu, X.-C. Ma, G.-G. Chang, S.-C. Ke, T. Xia, Z.-Y. Hu and X.-Y. Yang, Synergistic catalysis of Pd nanoparticles with both Lewis and Bronsted acid sites encapsulated within a sulfonated metal–organic frameworks toward one-pot tandem reactions, J. Colloid Interface Sci., 557 (2019) 207-215 [35] A. Schoedel, Z. Ji and O. M. Yaghi, The role of metal–organic frameworks in a carbon-neutral energy cycle, Nat. Energy, 1 (2016) 16034 [36] G. Cui, J. Wang and S. Zhang, Active chemisorption sites in functionalized ionic liquids for carbon capture, Chem. Soc. Rev., 45 (2016) 4307–4339 [37] J. Yang, F. J. Zhang, H. Y. Lu, X. Hong, H. L. Jiang, Y. Wu and Y. D. Li, Hollow Zn/Co ZIF particles derived from core–shell ZIF‐67@ ZIF‐8 as selective catalyst for the semi‐hydrogenation of acetylene, Angew. Chem., Int. Ed., 54 (2015) 10889-10893 [38] H. Chen, K. Shen, Y. Tan and Y. Li, Multishell hollow metal/nitrogen/carbon dodecahedrons with precisely controlled architectures and synergistically enhanced catalytic properties, ACS Nano, 13 (2019) 7800-7810 [39] H. Chen, K. Shen, Q. Mao, J. Chen and Y. Li, Nanoreactor of MOF-derived yolk–shell Co@C–N: Precisely controllable structure and enhanced catalytic activity, ACS Catal, 8 (2018) 1417-1426 [40] B. Mousavi, S. Chaemchuen, B. Moosavi, Z. Luo, N. Gholampour and F. Verpoort, Zeolitic imidazole framework-67 as an efficient heterogeneous catalyst for the conversion of CO2 to cyclic carbonates, New J. Chem., 40 (2016) 5170-5176 [41] X. Song, D. Hu, X. Yang, H. Zhang, W. Zhang, J. Li, M. Jia and J. Yu, Polyoxomolybdic cobalt encapsulated within Zr-based metal–organic frameworks as efficient heterogeneous catalysts for olefins epoxidation, ACS Sustain Chem Eng., 7 (2019) 3624-3631 [42] E. E. Macias, P. Ratnasamy and M. A. Carreon, Catalytic activity of metal organic framework Cu3(BTC)2 in the cycloaddition of CO2 to epichlorohydrin reaction, Catal. Today, 198 (2012) 215– 218 [43] R. R. Kuruppathparambil, T. Jose, R. Babu, G.-Y. Hwang, A. C. Kathalikkattil, D.-W. Kim and D.-W. Park, A room temperature synthesizable and environmental friendly heterogeneous ZIF-67 catalyst for the solvent less and co-catalyst free synthesis of cyclic carbonates, Appl. Catal. B, 1852 (2016) 562-569 [44] N. Wei, Y. Zhang, L. Liu, Z.-B. Han and D.-Q. Yuan, Pentanuclear Yb(III) cluster-based metal-organic frameworks as heterogeneous catalysts for CO2 conversion, Appl. Catal. B, 219 (2017) 6 [45] S. R. Leandro, A. C. Mourato, U. Łapińska, O. C. Monteiro, C. I. Fernandes, P. D. Vaz and C. D. Nunes, Efficient hydrodesulfurization catalysts derived from Strandberg P-Mo-Ni polyoxometalates, J. Catal., 358 (2018) 187-198 [46] W.-Y. Gao, L. Wojtas and S. Ma, A porous metal-metalloporphyrin framework featuring high-density active sites for chemical fixation of CO2 under ambient conditions, Chem. Commun., 50 (2014) 5316-5318 |