[1] C.L. Chou, Sulfur in coals:A review of geochemistry and origins, Int. J. Coal Geol. 100(2012) 1-13. [2] W.W. Li, Y.G. Tang, Sulfur isotopic composition of superhigh-organic-sulfur coals from the Chenxi coalfield, Southern China, Int. J. Coal Geol. 127(2014) 3-13. [3] J.S. Sinninghe Damsté, J.W. de Leeuw, Organically bound sulphur in coal:A molecular approach, Fuel Process. Technol. 30(2) (1992) 109-178. [4] S. Zhou, E.S. Garbett, R.F. Boucher, Gravity-enhanced magnetic (HGMS) coal cleaning, Ind. Eng. Chem. Res. 35(11) (1996) 4257-4263. [5] Z.X. Zhang, G.H. Yan, G.Q. Zhu, P.F. Zhao, Z.J. Ma, B. Zhang, Using microwave pretreatment to improve the high-gradient magnetic-separation desulfurization of pulverized coal before combustion, Fuel 274(2020) 117826. [6] M. Ramudzwagi, N. Tshiongo-Makgwe, W. Nheta, Recent developments in beneficiation of fine and ultra-fine coal-Review paper, J. Clean. Prod. 276(2020) 122693. [7] S.S. Ibrahim, B.E. El Anadoly, M.M. Farahat, A.Q. Selim, A.H. El-Menshawy, Separation of pyritic sulfur from Egyptian coal using falcon concentrator, Part. Sci. Technol. 32(6) (2014) 588-594. [8] Y.H. Chen, J.P. Xu, C.F. Cai, On pyrite from coal by adding pyrites depressor on the process of oil agglomeration, J. Anhui Univ. Technol. Sci. Nat. Sci. 21(2) (2006) 5-7. [9] Ö. Yas ar, T. Uslu, E. S ahinoǧlu, Fine coal recovery from washery tailings in Turkey by oil agglomeration, Powder Technol. 327(2018) 29-42. [10] B.S. Ken, B.K. Nandi, Desulfurization of high sulfur Indian coal by oil agglomeration using Linseed oil, Powder Technol. 342(2019) 690-697. [11] X. Qi, H.J. Zhang, C.Q. Zhang, Z.N. Zhu, K.K. Zhen, L. Yang, The flotation behavior of coal-pyrite in high-sulfur coal, Sep. Sci. Technol. 54(16) (2019) 2718-2728. [12] R.H. Jia, G.H. Harris, D.W. Fuerstenau, Chemical reagents for enhanced coal flotation, Coal Prep. 22(3) (2002) 123-149. [13] F.D. Ayhan, H. Abakay, A. Saydut, Desulfurization and deashing of Hazro coal via a flotation method, Energy Fuels 19(3) (2005) 1003-1007. [14] E. Sahinoglu, Cleaning of high pyritic sulfur fine coal via flotation, Adv. Powder Technol. 29(7) (2018) 1703-1712. [15] H.X. Zhang, X.Y. Ma, X.S. Dong, Z.Z. Wang, H.J. Bai, Enhanced desulfurizing flotation of high sulfur coal by sonoelectrochemical method, Fuel Process. Technol. 93(1) (2012) 13-17. [16] X.D. Yu, Z.F. Luo, D.Q. Gan, Desulfurization of high sulfur fine coal using a novel combined beneficiation process, Fuel 254(2019) 115603. [17] M.J. Wang, Y.F. Shen, Y.F. Hu, J. Kong, J.C. Wang, L.P. Chang, Effect of predesulfurization process on the sulfur forms and their transformations during pyrolysis of Yanzhou high sulfur coal, Fuel 276(2020) 118124. [18] M. Telfer, D.K. Zhang, The influence of water-soluble and acid-soluble inorganic matter on sulphur transformations during pyrolysis of low-rank coals, Fuel 80(14) (2001) 2085-2098. [19] L.J. Zhang, Z.H. Li, Y.L. Yang, Y.B. Zhou, B. Kong, J.H. Li, L.L. Si, Effect of acid treatment on the characteristics and structures of high-sulfur bituminous coal, Fuel 184(2016) 418-429. [20] K.M. Steel, J.W. Patrick, The production of ultra clean coal by sequential leaching with HF followed by HNO3, Fuel 82(15-17) (2003) 1917-1920. [21] H.G. Alam, A.Z. Moghaddam, M.R. Omidkhah, The influence of process parameters on desulfurization of Mezino coal by HNO3/HCl leaching, Fuel Process. Technol. 90(1) (2009) 1-7. [22] H. Karaca, K. Ceylan, Chemical cleaning of Turkish lignites by leaching with aqueous hydrogen peroxide, Fuel Process. Technol. 50(1) (1997) 19-33. [23] S. Mukherjee, S. Mahiuddin, P.C. Borthakur, Demineralization and desulfurization of subbituminous coal with hydrogen peroxide, Energy Fuels 15(6) (2001) 1418-1424. [24] B.P. Baruah, P. Khare, Desulfurization of oxidized Indian coals with solvent extraction and alkali treatment, Energy Fuels 21(4) (2007) 2156-2164. [25] A. Saydut, Y. Tonbul, A. Baysal, M.Z. Duz, C. Hamamci, Froth flotation pretreatment for enhancing desulfurization of coal with sodium hydroxide, J. Sci. Ind. Res. 66(1) (2007) 72-74. [26] K. Sugawara, T. Kato, H. Okawa, N. Worasuwannarak, Distribution of sulfur during solvent extraction of coals and desulfurization of extracted product, J. Chem. Eng. Japan 52(7) (2019) 610-615. [27] C.M. White, M.L. Lee, Identification and geochemical significance of some aromatic components of coal, Geochim. Cosmochim. Acta 44(11) (1980) 1825-1832. [28] C.M. White, L.J. Douglas, M.B. Perry, C.E. Schmidt, Characterization of extractable organosulfur constituents from Bevier seam coal, Energy Fuels 1(2) (1987) 222-226. [29] G. Gryglewicz, P. Rutkowski, J. Yperman, Characterization of sulfur compounds in supercritical coal extracts by gas chromatography-mass spectrometry, Fuel Process. Technol. 77-78(2002) 167-172. [30] W. Li, S.C. Guo, Supercritical desulfurization of high rank coal with alcohol/water and alcohol/KOH, Fuel Process. Technol. 46(2) (1996) 143-155. [31] D. Borah, M.K. Baruah, I. Haque, Oxidation of high sulphur coal. 3. Desulphurisation of organic sulphur by peroxyacetic acid (produced in situ) in presence of metal ions, Fuel Process. Technol. 86(9) (2005) 959-976. [32] L.J. Xu, D.J. Zou, Y.J. Cheng, Study on removal of organic sulfur from coal by 1-propyl alcohol, Coal Convers. 29(4) (2006) 13-16. [33] E. Jorjani, B. Rezai, M. Vossoughi, M. Osanloo, Desulfurization of Tabas coal with microwave irradiation/peroxyacetic acid washing at 25, 55 and 85 C, Fuel 83(7-8) (2004) 943-949. [34] A. Das, D.K. Sharma, Organic desulfurization of Assam coal and its sulfur-rich lithotypes by sequential solvent extraction to obtain cleaner fuel, Energy Sources 23(8) (2001) 687-697. [35] L.F. Tang, S.J. Chen, D.J. Gui, X.N. Zhu, H. He, X.X. Tao, Effect of removal organic sulfur from coal macromolecular on the properties of high organic sulfur coal, Fuel 259(2020) 116264. [36] P. Liang, X.Z. Qin, G.M. Bai, Z.X. Wu, D.K. Sun, Y.Q. Zhang, T.T. Jiao, Effects of ionic liquid pretreatment on pyrolysis characteristics of a high-sulfur bituminous coal, Fuel 258(2019) 116134. [37] W. Zhao, W.J. Xu, S.T. Zhong, Z.M. Zong, Desulfurization of coal by an electrochemical-reduction flotation technique, J. China Univ. Min. Technol. 18(4) (2008) 571-574. [38] X.X. Tao, N. Xu, M.H. Xie, L.F. Tang, Progress of the technique of coal microwave desulfurization, Int. J. Coal Sci. Technol. 1(1) (2014) 113-128. [39] Y.C. Yang, X.X. Tao, X. Kang, H. He, N. Xu, L.F. Tang, L.Q. Luo, Effects of microwave/HAc-H2O2 desulfurization on properties of Gedui high-sulfur coal, Fuel Process. Technol. 143(2016) 176-184. [40] B.K. Saikia, A.M. Dutta, B.P. Baruah, Feasibility studies of de-sulfurization and de-ashing of low grade medium to high sulfur coals by low energy ultrasonication, Fuel 123(2014) 12-18. [41] B.K. Saikia, A.C. Dalmora, R. Choudhury, T. Das, S.R. Taffarel, L.F.O. Silva, Effective removal of sulfur components from Brazilian power-coals by ultrasonication (40kHz) in presence of H2O2, Ultrason. Sonochem. 32(2016) 147-157. [42] M.J. Wang, T.H. Jia, J.C. Wang, Y.F. Hu, F.R. Liu, H. Wang, L.P. Chang, Changes of sulfur forms in coal after tetrachloroethylene extraction and theirs transformations during pyrolysis, Fuel 186(2016) 726-733. [43] J. Mi, J. Ren, J.C. Wang, W.R. Bao, K.C. Xie, Ultrasonic and microwave desulfurization of coal in tetrachloroethylene, Energy Sources Part A:Recover. Util. Environ. Eff. 29(14) (2007) 1261-1268. [44] W.H. Calkins, The chemical forms of sulfur in coal:A review, Fuel 73(4) (1994) 475-484. [45] D3177-02(2007), Standard test method for total sulfur in the analysis sample of coal and coke, American Society for Testing Materials (ASTM), 2007. [46] D2492-02(2012), Standard test method for forms of sulfur in coal, American Society for Testing Materials (ASTM), 2012. [47] R. Markuszewski, Some thoughts on the difficulties in the analysis of sulfur forms in coal, J. Coal Qual. 7(1) (1988) 1-4. [48] H.D. Schultz, W.G. Proctor, Application of electron emission spectroscopy to characterize sulfur bonds in coal, Appl. Spectrosc. 27(5) (1973) 347-351. [49] W.H. Calkins, Investigation of organic sulfur-containing structures in coal by flash pyrolysis experiments, Energy Fuels 1(1) (1987) 59-64. [50] A.N. Buckley, K.W. Riley, M.A. Wilson, Heteroatom functionality in a highsulfur Chinese bituminous coal, Org. Geochem. 24(3) (1996) 389-392. [51] T. Grzybek, R. Pietrzak, H. Wachowska, X-ray photoelectron spectroscopy study of oxidized coals with different sulphur content, Fuel Process. Technol. 77-78(2002) 1-7. [52] G.P. Huffman, F.E. Huggins, S. Mitra, N. Shah, R.J. Pugmire, B. Davis, F.W. Lytle, R.B. Greegor, Investigation of the molecular structure of organic sulfur in coal by XAFS spectroscopy, Energy Fuels 3(2) (1989) 200-205. [53] G.P. Huffman, S. Mitra, F.E. Huggins, N. Shah, S. Vaidya, F.L. Lu, Quantitative analysis of all major forms of sulfur in coal by X-ray absorption fine structure spectroscopy, Energy Fuels 5(4) (1991) 574-581. [54] M.M. Taghiei, F.E. Huggins, N. Shah, G.P. Huffman, In situ X-ray absorption fine structure spectroscopy investigation of sulfur functional groups in coal during pyrolysis and oxidation, Energy Fuels 6(3) (1992) 293-300. [55] M.J. Wang, Y.F. Hu, J.C. Wang, L.P. Chang, H. Wang, Transformation of sulfur during pyrolysis of inertinite-rich coals and correlation with their characteristics, J. Anal. Appl. Pyrolysis 104(2013) 585-592. [56] G.N. George, M.L. Gorbaty, Sulfur K-edge X-ray absorption spectroscopy of petroleum asphaltenes and model compounds, J. Am. Chem. Soc. 111(9) (1989) 3182-3186. [57] G.N. George, M.L. Gorbaty, S.R. Kelemen, M. Sansone, Direct determination and quantification of sulfur forms in coals from the Argonne Premium Sample Program, Energy Fuels 5(1) (1991) 93-97. [58] M. Kasrai, J.R. Brown, G.M. Bancroft, Z. Yin, K.H. Tan, Sulphur characterization in coal from X-ray absorption near edge spectroscopy, Int. J. Coal Geol. 32(1-4) (1996) 107-135. [59] M.A. Vairavamurthy, D. Maletic, S. Wang, B. Manowitz, T. Eglinton, T. Lyons, Characterization of sulfur-containing functional groups in sedimentary humic substances by X-ray absorption near-edge structure spectroscopy, Energy Fuels 11(3) (1997) 546-553. [60] J.H. Cai, E. Morris, C.Q. Jia, Sulfur speciation in fluid coke and its activation products using K-edge X-ray absorption near edge structure spectroscopy, J. Sulfur Chem. 30(6) (2009) 555-569. [61] J. Prietzel, A. Botzaki, N. Tyufekchieva, M. Brettholle, J. Thieme, W. Klysubun, Sulfur speciation in soil by S K-edge XANES spectroscopy:Comparison of spectral deconvolution and linear combination fitting, Environ. Sci. Technol. 45(7) (2011) 2878-2886. [62] L.J. Liu, J.X. Fei, M.Q. Cui, Y.F. Hu, J. Wang, XANES spectroscopic study of sulfur transformations during co-pyrolysis of a calcium-rich lignite and a highsulfur bituminous coal, Fuel Process. Technol. 121(2014) 56-62. [63] M.J. Wang, L.J. Liu, J.C. Wang, L.P. Chang, H. Wang, Y.F. Hu, Sulfur K-edge XANES study of sulfur transformation during pyrolysis of four coals with different ranks, Fuel Process. Technol. 131(2015) 262-269. [64] N.N. Yang, H.Q. Guo, F.R. Liu, H. Zhang, Y.F. Hu, R.S. Hu, Effects of atmospheres on sulfur release and its transformation behavior during coal thermolysis, Fuel 215(2018) 446-453. [65] Y.F. Shen, M.J. Wang, Y.F. Hu, J. Kong, J.C. Wang, L.P. Chang, W.R. Bao, Transformation and regulation of sulfur during pyrolysis of coal blend with high organic-sulfur fat coal, Fuel 249(2019) 427-433. [66] Y.F. Shen, M.J. Wang, Y.C. Wu, Y.F. Hu, J. Kong, X.B. Duan, J.C. Wang, L.P. Chang, W.R. Bao, Role of gas coal in directional regulation of sulfur during coalblending coking of high organic-sulfur coking coal, Energy Fuels 34(3) (2020) 2757-2764. [67] N.N. Yang, H.Q. Guo, Y.Q. Lei, Y.B. Zhang, M.J. Wang, F.R. Liu, R.S. Hu, Y.F. Hu, XAS combined with Py-GC study on the effects of temperatures and atmospheres on sulfur release and its transformation behavior during coal pyrolysis, Fuel 250(2019) 373-380. [68] H.Q. Guo, Q. Fu, L. Zhang, F.R. Liu, Y.F. Hu, H. Zhang, R.S. Hu, Sulfur K-edge XAS study of sulfur transformation behavior during pyrolysis and co-pyrolysis of biomass and coals under different atmospheres, Fuel 234(2018) 1322-1327. [69] H.Q. Guo, H. Wu, N.N. Yang, Q. Fu, F.R. Liu, H. Zhang, R.S. Hu, Y.F. Hu, XAS combined with TG-DTG study on synergic effect on sulfur transformation during co-pyrolysis of sawdust and lignite, J. Therm. Anal. Calorim. 135(4) (2019) 2475-2480. [70] R.G. Guan, W. Li, B.Q. Li, Effects of Ca-based additives on desulfurization during coal pyrolysis, Fuel 82(15-17) (2003) 1961-1966. [71] K.T. Lee, A.R. Mohamed, S. Bhatia, K.H. Chu, Removal of sulfur dioxide by fly ash/CaO/CaSO4 sorbents, Chem. Eng. J. 114(1-3) (2005) 171-177. [72] K.T. Lee, S. Bhatia, A.R. Mohamed, Preparation and characterization of CaO/CaSO4/coal fly ash sorbent for sulfur dioxide (SO2) removal:Part I, Energy Sources Part A:Recover. Util. Environ. Eff. 28(13) (2006) 1241-1249. [73] B.D. Galloway, R.A. MacDonald, B. Padak, Characterization of sulfur products on CaO at high temperatures for air and oxy-combustion, Int. J. Coal Geol. 167(2016) 1-9. [74] X. Jia, Q.H. Wang, L. Han, L.M. Cheng, M.X. Fang, Z.Y. Luo, K.F. Cen, Sulfur transformation during the pyrolysis of coal with the addition of CaSO4 in a fixed-bed reactor, J. Anal. Appl. Pyrolysis 124(2017) 319-326. [75] X. Jia, Q.H. Wang, K.F. Cen, L.M. Cheng, Sulfur transformation during the pyrolysis of coal mixed with coal ash in a fixed bed reactor, Fuel 177(2016) 260-267. [76] J.P. Mathews, A.C.T. van Duin, A.L. Chaffee, The utility of coal molecular models, Fuel Process. Technol. 92(4) (2011) 718-728. [77] G.N.Okolo,H.W.J.P.Neomagus,R.C.Everson,M.J.Roberts,J.R.Bunt,R.Sakurovs, J.P. Mathews, Chemical-structural properties of South African bituminous coals:Insights from wide angle XRD-carbon fraction analysis, ATR-FTIR, solid state 13C NMR, and HRTEM techniques, Fuel 158(2015) 779-792. [78] G. Gryglewicz, Effectiveness of high temperature pyrolysis in sulfur removal from coal, Fuel Process. Technol. 46(3) (1996) 217-226. [79] Q.L. Sun, W. Li, H.K. Chen, B.Q. Li, Characteristic of sulfur-containing gases released from the pyrolysis of coal macerals, J. China Univ. Min. Technol. 34(4) (2005) 518-522. [80] M.I.M. Chou, M.A. Lake, R.A. Griffin, Flash pyrolysis of coal, coal maceral, and coal-derived pyrite with on-line characterization of volatile sulfur compounds, J. Anal. Appl. Pyrolysis 13(3) (1988) 199-207. [81] G. Gryglewicz, Sulfur transformations during pyrolysis of a high sulfur Polish coking coal, Fuel 74(3) (1995) 356-361. [82] G. Gryglewicz, P. Wilk, J. Yperman, D.V. Franco, I.I. Maes, J. Mullens, L.C. van Poucke, Interaction of the organic matrix with pyrite during pyrolysis of a high-sulfur bituminous coal, Fuel 75(13) (1996) 1499-1504. [83] H.K. Chen, B.Q. Li, B.J. Zhang, Decomposition of pyrite and the interaction of pyrite with coal organic matrix in pyrolysis and hydropyrolysis, Fuel 79(13) (2000) 1627-1631. [84] Z.Z. Wang, L.B. Wang, X.F. Pei, Q. Zhao, X.Y. Bai, Y. Wang, Transfer laws of various sulfur speciation during pyrolysis of Qinneng coking coal, Coal Sci. Technol. 42(4) (2014) 116-120. [85] M. Li, J.H. Yang, H.B. Xia, H.Z. Chang, H. Sun, Behavior of organic sulfur transformation during pyrolysis of high-sulfur coking coals, Coal Convers. 37(2) (2014) 42-46. [86] H.K. Chen, B.Q. Li, J.L. Yang, B.J. Zhang, Transformation of sulfur during pyrolysis and hydropyrolysis of coal, Fuel 77(6) (1998) 487-493. [87] X.L. Wang, H.Q. Guo, F.R. Liu, R.S. Hu, M.J. Wang, Effects of CO2 on sulfur removal and its release behavior during coal pyrolysis, Fuel 165(2016) 484-489. [88] Y.Q. Zhang, P. Liang, T.T. Jiao, J.F. Wu, H.W. Zhang, Effect of foreign minerals on sulfur transformation in the step conversion of coal pyrolysis and combustion, J. Anal. Appl. Pyrolysis 127(2017) 240-245. [89] S. Karaca, Desulfurization of a Turkish lignite at various gas atmospheres by pyrolysis. Effect of mineral matter, Fuel 82(12) (2003) 1509-1516. [90] B.F. Wang, S.G. Zhao, Y.R. Huang, J.J. Zhang, Effect of some natural minerals on transformation behavior of sulfur during pyrolysis of coal and biomass, J. Anal. Appl. Pyrolysis 105(2014) 284-294. [91] J.X. Fei, J. Zhang, F.C. Wang, J. Wang, Synergistic effects on co-pyrolysis of lignite and high-sulfur swelling coal, J. Anal. Appl. Pyrolysis 95(2012) 61-67. [92] F.R. Liu, W. Li, H.K. Chen, B.Q. Li, Uneven distribution of sulfurs and their transformation during coal pyrolysis, Fuel 86(3) (2007) 360-366. [93] J.D. Yan, J.L. Yang, Z.Y. Liu, SH radical:The key intermediate in sulfur transformation during thermal processing of coal, Environ. Sci. Technol. 39(13) (2005) 5043-5051. [94] Q. Zhou, H.Q. Hu, Q.R. Liu, S.W. Zhu, R. Zhao, Effect of atmosphere on evolution of sulfur-containing gases during coal pyrolysis, Energy Fuels 19(3) (2005) 892-897. [95] Z.C. Guo, Z.X. Fu, S.X. Wang, Sulfur distribution in coke and sulfur removal during pyrolysis, Fuel Process. Technol. 88(10) (2007) 935-941. [96] Z.C. Guo, H.Q. Tang, J.L. Liu, Desulfurization of coke by recycling COG in coking process, Fuel 84(7-8) (2005) 893-901. [97] Y.H. Liang, F. Wang, H. Zhang, J.P. Wang, Y.Y. Li, G.Y. Li, A ReaxFF molecular dynamics study on the mechanism of organic sulfur transformation in the hydropyrolysis process of lignite, Fuel Process. Technol. 147(2016) 32-40. [98] F.R. Liu, B.Q. Li, W. Li, Z.Q. Bai, J. Yperman, Py-MS study of sulfur behavior during pyrolysis of high-sulfur coals under different atmospheres, Fuel Process. Technol. 91(11) (2010) 1486-1490. [99] F.R. Liu, L.L. Xie, H.Q. Guo, M. Xue, R.S. Hu, H.Q. Hu, Sulfur release and transformation behaviors of sulfur-containing model compounds during pyrolysis under oxidative atmosphere, Fuel 115(2014) 596-599. [100] M. Wang, Q. Du, Y.P. Li, J.J. Xu, J.M. Gao, H. Wang, Effect of steam on the transformation of sulfur during demineralized coal pyrolysis, J. Anal. Appl. Pyrolysis 140(2019) 161-169. [101] L.N. Tian, W. Yang, Z.H. Chen, X.H. Wang, H.P. Yang, H.P. Chen, Sulfur behavior during coal combustion in oxy-fuel circulating fluidized bed condition by using TG-FTIR, J. Energy Inst. 89(2) (2016) 264-270. |