[1] P.V. Godbole, C.C. Tang, A.J. Ghajar, Comparison of void fraction correlations for different flow patterns in upward vertical two-phase flow, Heat Transf. Eng. 32 (10) (2011) 843-860 [2] J.B. Jia, A. Babatunde, M. Wang, Void fraction measurement of gas-liquid two-phase flow from differential pressure, Flow Meas. Instrum. 41 (2015) 75-80 [3] M. Gui, Z.H. Liu, B. Liao, T. Wang, Y. Wang, Z.Q. Sui, Q.C. Bi, J. Wang, Void fraction measurements of steam-water two-phase flow in vertical rod bundle:Comparison among different techniques, Exp. Therm. Fluid Sci. 109 (2019) 109881 [4] M.V. Sardeshpande, S. Harinarayan, V.V. Ranade, Void fraction measurement using electrical capacitance tomography and high speed photography, Chem. Eng. Res. Des. 94 (2015) 1-11 [5] T. Hibiki, K. Mishima, H. Nishihara, Measurement of radial void fraction distribution of two-phase flow in a metallic round tube using neutrons as microscopic probes, Nucl. Instruments Methods Phys. Res. Sect. A:Accel. Spectrometers Detect. Assoc. Equip. 399 (2-3) (1997) 432-438 [6] J. Kim, Y.C. Ahn, M.H. Kim, Measurement of void fraction and bubble speed of slug flow with three-ring conductance probes, Flow Meas. Instrum. 20 (3) (2009) 103-109 [7] M. Gui, T. Wang, Z.H. Liu, Z.Q. Sui, Q.C. Bi, Void fractions in a rod bundle geometry at high pressure-part Ⅰ:Experimental study, Int. J. Multiph. Flow 122 (2020) 103146 [8] M. Gui, Z.H. Liu, T. Wang, Z.Q. Sui, Q.C. Bi, Void fractions in a rod bundle geometry at high pressure-Part Ⅱ:Drift-flux model assessment and development, Int. J. Multiph. Flow 125 (2020) 103231 [9] S.G. Bankoff, A variable density single-fluid model for two-phase flow with particular reference to steam-water flow, J. Heat Transf. 82 (4) (1960) 265-272 [10] N. Zuber, J.A. Findlay, Average volumetric concentration in two-phase flow systems, J. Heat Transf. 87 (4) (1965) 453-468 [11] D. Butterworth, A comparison of some void-fraction relationships for co-current gas-liquid flow, Int. J. Multiph. Flow 1 (6) (1975) 845-850 [12] A.O. Morgado, J.M. Miranda, J.D.P. Araújo, J.B.L.M. Campos, Review on vertical gas-liquid slug flow, Int. J. Multiph. Flow 85 (2016) 348-368 [13] J. Enrique Juliá, W.K. Harteveld, R.F. Mudde, H.E.A. van den Akker, On the accuracy of the void fraction measurements using optical probes in bubbly flows, Rev. Sci. Instrum. 76 (3) (2005) 035103 [14] L.S. Tong, Y.S. Tang, Flow boiling. Boiling Heat Transfer and Two-Phase Flow, Taylor & Francis, London, 1997 [15] M.A. Woldesemayat, A.J. Ghajar, Comparison of void fraction correlations for different flow patterns in horizontal and upward inclined pipes, Int. J. Multiph. Flow 33 (4) (2007) 347-370 [16] A.A. Armand, The resistance during the movement of a two-phase system in horizontal pipes, Izv Vse Tepl Inst, 1 (1946) 16-23 [17] G.A. Hughmark, Hold-up in gas-liquid flow, Chem. Eng. Prog. 58 (1962) 62-65 [18] R.H. Bonnecaze, W. Erskine, E.J. Greskovich, Holdup and pressure drop for two-phase slug flow in inclined pipelines, AIChE J. 17 (5) (1971) 1109-1113 [19] A. Premoli, D.D. Francesco, A. Prina, A dimensional correlation for evaluating two-phase mixture density, in:European Two-Phase Flow Group Meeting, Milan, Italy, 1971. [20] J. Schmidt, H. Giesbrecht, C.W.M. van der Geld, Phase and velocity distributions in vertically upward high-viscosity two-phase flow, Int. J. Multiph. Flow 34 (4) (2008) 363-374 [21] S.M. Bhagwat, A.J. Ghajar, A flow pattern independent drift flux model based void fraction correlation for a wide range of gas-liquid two phase flow, Int. J. Multiph. Flow 59 (2014) 186-205 [22] S.P. Evgenidis, T.D. Karapantsios, Gas-liquid flow of sub-millimeter bubbles at low void fractions:Void fraction prediction using drift-flux model, Exp. Therm. Fluid Sci. 98 (2018) 195-205 [23] G.B. Wallis, One-Dimensional Two-Phase Flow, McGraw-Hill, New York, 1969 [24] M. Ishii, One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes, ANL-77-47, Office of Scientific and Technical Information (OSTI), 1977. [25] T. Hibiki, M. Ishii, One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes, Int. J. Heat Mass Transf. 46 (25) (2003) 4935-4948 [26] S. Guet, S. Decarre, V. Henriot, A. Liné, Void fraction in vertical gas-liquid slug flow:Influence of liquid slug content, Chem. Eng. Sci. 61 (22) (2006) 7336-7350 [27] N. Brauner, A. Ullmann, Modelling of gas entrainment from Taylor bubbles. Part A:Slug flow, Int. J. Multiph. Flow 30 (3) (2004) 239-272 [28] Z.L. Liu, R.Q. Liao, W. Luo, Y.B. Su, J.X.F. Ribeiro, A new model for predicting slug flow liquid holdup in vertical pipes with different viscosities, Arab. J. Sci. Eng. 45 (9) (2020) 7741-7750 [29] O.A. Adekomaya, An improved version of drift-flux model for predicting pressure-gradient and void-fraction in vertical and near vertical slug flow, J. Petroleum Sci. Eng. 116 (2014) 103-108 [30] T. Wang, M. Gui, T. Zhang, Q.C. Bi, J.L. Zhao, Z.H. Liu, Experimental investigation on characteristic parameters of air-water slug flow in a vertical tube, Chem. Eng. Sci. 246 (2021) 116895 [31] S. Paranjape, S.W. Chen, T. Hibiki, M. Ishii, Flow regime identification under adiabatic upward two-phase flow in a vertical rod bundle geometry, J. Fluids Eng. 133 (9) (2011) 091302 [32] T. Wang, Z.H. Liu, M. Gui, Q.C. Bi, Z.Q. Sui, Flow regime identification of steam-water two-phase flow using optical probes, based on local parameters in vertical tube bundles, Flow Meas. Instrum. 79 (2021) 101928 [33] M. Mac Giolla Eain, V. Egan, J. Punch, Film thickness measurements in liquid-liquid slug flow regimes, Int. J. Heat Fluid Flow 44 (2013) 515-523 [34] L. Liu, B.F. Bai, Error analysis of liquid holdup measurement in gas-liquid annular flow through circular pipes using high-speed camera method, J. Shanghai Jiaotong Univ. Sci. 23 (1) (2018) 34-40 [35] J.Y. Kim, A.J. Ghajar, A general heat transfer correlation for non-boiling gas-liquid flow with different flow patterns in horizontal pipes, Int. J. Multiph. Flow 32 (4) (2006) 447-465 [36] T.S. Mayor, A.M.F.R. Pinto, J.B.L.M. Campos, Hydrodynamics of gas-liquid slug flow along vertical pipes in turbulent regime:A simulation study, Chem. Eng. Res. Des. 85 (11) (2007) 1497-1513 [37] R.A.S. Brown, The mechanics of large gas bubbles in tubes:II. The prediction of voidage in vertical gas-liquid flow, Can. J. Chem. Eng. 43 (1965) 224-230 [38] E.W. Llewellin, E. del Bello, J. Taddeucci, P. Scarlato, S.J. Lane, The thickness of the falling film of liquid around a Taylor bubble, Proc. R. Soc. A. 468 (2140) (2012) 1041-1064 [39] D.T. Dumitrescu, Strömung an einer Luftblase im senkrechten Rohr, Z. Angew. Math. Mech. 23 (3) (1943) 139-149 [40] S. Nogueira, M.L. Riethmuler, J.B.L.M. Campos, A.M.F.R. Pinto, Flow in the nose region and annular film around a Taylor bubble rising through vertical columns of stagnant and flowing Newtonian liquids, Chem. Eng. Sci. 61 (2) (2006) 845-857 [41] M.B. de Azevedo, D.D. Santos, J.L.H. Faccini, J. Su, Experimental study of the falling film of liquid around a Taylor bubble, Int. J. Multiph. Flow 88 (2017) 133-141 [42] Z.S. Mao, A.E. Dukler, The motion of Taylor bubbles in vertical tubes. I. A numerical simulation for the shape and rise velocity of Taylor bubbles in stagnant and flowing liquid, J. Comput. Phys. 91 (1) (1990) 132-160 [43] Z.S. Mao, A.E. Dukler, The motion of Taylor bubbles in vertical tubes-II. Experimental data and simulations for laminar and turbulent flow, Chem. Eng. Sci. 46 (8) (1991) 2055-2064 [44] E. Roitberg, D. Barnea, L. Shemer, Elongated bubble shape in inclined air-water slug flow, Int. J. Multiph. Flow 85 (2016) 76-85 [45] M.B. de Azevedo, J.L.H. Faccini, J. Su, Experimental study of single Taylor bubbles rising in vertical and slightly deviated circular tubes, Exp. Therm. Fluid Sci. 116 (2020) 110109 [46] R.F.L. Cerqueira, E.E. Paladino, Experimental study of the flow structure around Taylor bubbles in the presence of dispersed bubbles, Int. J. Multiph. Flow 133 (2020) 103450 [47] L.X. Cheng, G. Ribatski, J.R. Thome, Two-phase flow patterns and flow-pattern maps:Fundamentals and applications, Appl. Mech. Rev. 61 (5) (2008) 050802 [48] D.J. Nicklin, J.O. Wilkes, J.F. Davidson, Two-phase flow in vertical tubes, Trans. Inst. Chem. Eng. 40 (1962) 61-68 [49] J.B.L.M. Campos, J.R.F.G. De Carvalho, An experimental study of the wake of gas slugs rising in liquids, J. Fluid Mech. 196 (1988) 27-37 [50] M.E. Shawkat, C.Y. Ching, M. Shoukri, Bubble and liquid turbulence characteristics of bubbly flow in a large diameter vertical pipe, Int. J. Multiph. Flow 34 (8) (2008) 767-785 [51] H.B. Jin, S.H. Yang, M. Wang, R.A. Williams, Measurement of gas holdup profiles in a gas liquid cocurrent bubble column using electrical resistance tomography, Flow Meas. Instrum. 18 (5-6) (2007) 191-196 [52] R. Babaei, B. Bonakdarpour, F. Ein-Mozaffari, The use of electrical resistance tomography for the characterization of gas holdup inside a bubble column bioreactor containing activated sludge, Chem. Eng. J. 268 (2015) 260-269 [53] T.J. Liu, S.G. Bankoff, Structure of air-water bubbly flow in a vertical pipe-II. Void fraction, bubble velocity and bubble size distribution, Int. J. Heat Mass Transf. 36 (4) (1993) 1061-1072 [54] O. Marfaing, M. Guingo, J. Laviéville, G. Bois, N. Méchitoua, N. Mérigoux, S. Mimouni, An analytical relation for the void fraction distribution in a fully developed bubbly flow in a vertical pipe, Chem. Eng. Sci. 152 (2016) 579-585 [55] V.E. Nakoryakov, O.N. Kashinsky, V.V. Randin, L.S. Timkin, Gas-liquid bubbly flow in vertical pipes, J. Fluids Eng. 118 (2) (1996) 377-382 [56] S. Mendez-Diaz, R. Zenit, S. Chiva, J.L. Muñoz-Cobo, S. Martinez-Martinez, A criterion for the transition from wall to core peak gas volume fraction distributions in bubbly flows, Int. J. Multiph. Flow 43 (2012) 56-61 [57] M. Lopez de Bertodano, R.T. Lahey Jr, O.C. Jones Jr, Phase distribution in bubbly two-phase flow in vertical ducts, Int. J. Multiph. Flow 20 (5) (1994) 805-818 [58] Y.C. Fu, Y. Liu, Experimental study of bubbly flow using image processing techniques, Nucl. Eng. Des. 310 (2016) 570-579 [59] S.K. Majumder, Hydrodynamics and Transport Processes of Inverse Bubbly Flow, Elsevier, Amsterdam, 2016 [60] O. Ronneberger, P. Fischer, T. Brox, U-Net:Convolutional Networks for Biomedical Image Segmentation, Springer International Publishing, New York, 2015 [61] C. Olerni, J.B. Jia, M. Wang, Measurement of air distribution and void fraction of an upwards air-water flow using electrical resistance tomography and a wire-mesh sensor, Meas. Sci. Technol. 24 (3) (2013) 035403 [62] P.L. Spedding, D.R. Spence, Prediction of holdup in two-phase flow, Int. J. Eng. Fluid Mech. 2 (1989) 109-118 [63] G.Y. Wang, M.H. Zhang, M. Ishii, Flow structure of bubbly to slug transition flow in a small pipe, Int. J. Heat Mass Transf. 147 (2020) 118943 |