[1] E.M. Córdoba, J.A. Muñoz, M.L. Blázquez, F. González, A. Ballester, Leaching of chalcopyrite with ferric ion. Part I: General aspects, Hydrometallurgy 93(3–4) (2008) 81–87. [2] Z. Liu, S.B. Yang, Y.S. Bai, J.J. Xiu, H. Yan, J. Huang, L.W. Wang, H.M. Zhang, Y. Liu, The alteration of cell membrane of sulfate reducing bacteria in the presence of Mn(II) and Cd(II), Miner. Eng. 24(8) (2011) 839–844. [3] H.B. Zhao, Y.S. Zhang, X. Zhang, L. Qian, M.L. Sun, Y. Yang, Y.S. Zhang, J. Wang, H. Kim, G.Z. Qiu, The dissolution and passivation mechanism of chalcopyrite in bioleaching: An overview, Miner. Eng. 136(2019) 140–154. [4] W.M. Zeng, Y.P. Peng, T.J. Peng, M.H. Nan, M. Chen, G.Z. Qiu, L. Shen, Electrochemical studies on dissolution and passivation behavior of low temperature bioleaching of chalcopyrite by Acidithiobacillus ferrivorans YL15, Miner. Eng. 155(2020) 106416. [5] G.M. O’Connor, J.J. Eksteen, A critical review of the passivation and semiconductor mechanisms of chalcopyrite leaching, Miner. Eng. 154(2020) 106401. [6] J.L. Xia, H.C. Liu, Z.Y. Nie, X.L. Fan, D.R. Zhang, X.F. Zheng, L.Z. Liu, X. Pan, Y.H. Zhou, Taking insights into phenomics of microbe-mineral interaction in bioleaching and acid mine drainage: Concepts and methodology, Sci. Total. Environ. 729(2020) 139005. [7] A. Chopard, B. Plante, M. Benzaazoua, H. Bouzahzah, P. Marion, Geochemical investigation of the galvanic effects during oxidation of pyrite and base-metals sulfides, Chemosphere 166(2017) 281–291. [8] C.X. Zhao, B.J. Yang, X.X. Wang, H.B. Zhao, M. Gan, G.Z. Qiu, J. Wang, Catalytic effect of visible light and Cd2+ on chalcopyrite bioleaching, Trans. Nonferrous Met. Soc. China 30(4) (2020) 1078–1090. [9] B.J. Yang, C.X. Zhao, W. Luo, R. Liao, M. Gan, J. Wang, X.D. Liu, G.Z. Qiu, Catalytic effect of silver on copper release from chalcopyrite mediated by Acidithiobacillus ferrooxidans, J. Hazard. Mater. 392(2020) 122290. [10] F.K. Crundwell, A. van Aswegen, L.J. Bryson, C. Biley, D. Craig, V.D. Marsicano, J. M. Keartland, The effect of visible light on the dissolution of natural chalcopyrite (CuFeS2) in sulphuric acid solutions, Hydrometallurgy 158(2015) 119–131. [11] A.H. Lu, Y. Li, S. Jin, X. Wang, X.L. Wu, C.P. Zeng, Y. Li, H.R. Ding, R.X. Hao, M. Lv, C.Q. Wang, Y.Q. Tang, H.L. Dong, Growth of non-phototrophic microorganisms using solar energy through mineral photocatalysis, Nat. Commun. 3(2012) 768. [12] F.K.Crundwell,L.J.Bryson,A.vanAswegen,B.D.H.Knights,Effectofchoppedlight on the dissolution and leaching of chalcopyrite, Miner. Eng. 160(2021) 106703. [13] S. Zhou, M. Gan, J.Y. Zhu, Q. Li, S.Q. Jie, B.J. Yang, X.D. Liu, Catalytic effect of light illumination on bioleaching of chalcopyrite, Bioresour. Technol. 182(2015) 345–352. [14] S. Ghosh, S. Mohanty, S. Nayak, L.B. Sukla, A.P. Das, Molecular identification of indigenous manganese solubilising bacterial biodiversity from manganese mining deposits, J. Basic Microbiol. 56(3) (2016) 254–262. [15] A.H. Lu, Y. Li, H.R. Ding, X.M. Xu, Y.Z. Li, G.P. Ren, J. Liang, Y.W. Liu, H. Hong, N. Chen, S.Q. Chu, F.F. Liu, Y. Li, H.R. Wang, C. Ding, C.Q. Wang, Y. Lai, J. Liu, J. Dick, K.H. Liu, M.F. Hochella Jr, Photoelectric conversion on Earth’s surface via widespread Fe- and Mn-mineral coatings, PNAS 116(20) (2019) 9741–9746. [16] N. Sakai, Y. Ebina, K. Takada, T. Sasaki, Photocurrent generation from semiconducting manganese oxide nanosheets in response to visible light, J. Phys. Chem. B 109(19) (2005) 9651–9655. [17] R. Liao, B.J. Yang, X.T. Huang, M.X. Hong, S.C. Yu, S.T. Liu, J. Wang, G.Z. Qiu, Combined effect of silver ion and pyrite on AMD formation generated by chalcopyrite bio-dissolution, Chemosphere 279(2021) 130516. [18] R.Y. Zhang, D.Z. Wei, Y.B. Shen, W.G. Liu, T. Lu, C. Han, Catalytic effect of polyethylene glycol on sulfur oxidation in chalcopyrite bioleaching by Acidithiobacillus ferrooxidans, Miner. Eng. 95(2016) 74–78. [19] H.B. Zhao, J. Wang, X.W. Gan, M.H. Hu, L. Tao, W.Q. Qin, G.Z. Qiu, Role of pyrite in sulfuric acid leaching of chalcopyrite: An elimination of polysulfide by controlling redox potential, Hydrometallurgy 164(2016) 159–165. [20] J.V. Ferrari, P. Z, M.B.D. Almeida, Determination of copper and zinc contents in brass plating solutions by titrimetric analysis: A review, Trans. Inst. Met. Finish. 91(12) (2004) 38–43. [21] J.L. Xia, J.J. Song, H.C. Liu, Z.Y. Nie, L. Shen, P. Yuan, C.Y. Ma, L. Zheng, Y.D. Zhao, Study on catalytic mechanism of silver ions in bioleaching of chalcopyrite by SR-XRD and XANES, Hydrometallurgy 180(2018) 26–35. [22] M.X. Hong, X.T. Huang, X.W. Gan, G.Z. Qiu, J. Wang, The use of pyrite to control redox potential to enhance chalcopyrite bioleaching in the presence of Leptospirillum ferriphilum, Miner. Eng. 172(2021) 107145. [23] R. Guo, A.G. Yan, J.J. Xu, B.T. Xu, T.T. Li, X.W. Liu, T.F. Yi, S.H. Luo, Effects of morphology on the visible-light-driven photocatalytic and bactericidal properties of BiVO4/CdS heterojunctions: A discussion on photocatalysis mechanism, J. Alloy. Compd. 817(2020) 153246. [24] B.J. Yang, M. Lin, J.H. Fang, R.Y. Zhang, W. Luo, X.X. Wang, R. Liao, B.Q. Wu, J. Wang, M. Gan, B. Liu, Y. Zhang, X.D. Liu, W.Q. Qin, G.Z. Qiu, Combined effects of jarosite and visible light on chalcopyrite dissolution mediated by Acidithiobacillus ferrooxidans, Sci. Total Environ. 698(2020) 134175. [25] C. Droguett, R. Salazar, E. Brillas, I. Sirés, C. Carlesi, J.F. Marco, A. Thiam, Treatment of antibiotic cephalexin by heterogeneous electrochemical Fentonbased processes using chalcopyrite as sustainable catalyst, Sci. Total Environ. 740(2020) 140154. [26] C.B. Tabelin, R.D. Corpuz, T. Igarashi, M. Villacorte-Tabelin, R.D. Alorro, K. Yoo, S. Raval, M. Ito, N. Hiroyoshi, Acid mine drainage formation and arsenic mobility under strongly acidic conditions: Importance of soluble phases, iron oxyhydroxides/oxides and nature of oxidation layer on pyrite, J. Hazard. Mater. 399(2020) 122844. [27] Q.Y. Liu, M. Chen, Y. Yang, The effect of chloride ions on the electrochemical dissolution of chalcopyrite in sulfuric acid solutions, Electrochim. Acta 253(2017) 257–267. [28] O.G. Olvera, M. Rebolledo, E. Asselin, Atmospheric ferric sulfate leaching of chalcopyrite: Thermodynamics, kinetics and electrochemistry, Hydrometallurgy 165(2016) 148–158. [29] B.J. Yang, W. Luo, X.X. Wang, S.C. Yu, M. Gan, J. Wang, X.D. Liu, G.Z. Qiu, The use of biochar for controlling acid mine drainage through the inhibition of chalcopyrite biodissolution, Sci. Total Environ. 737(2020) 139485. [30] Y.S. Zhang, H.B. Zhao, L. Qian, M.L. Sun, X. Lv, L.Y. Zhang, J. Petersen, G.Z. Qiu, A brief overview on the dissolution mechanisms of sulfide minerals in acidic sulfate environments at low temperatures: Emphasis on electrochemical cyclic voltammetry analysis, Miner. Eng. 158(2020) 106586. [31] Z.Z. Bian, Y.L. Feng, H.R. Li, Z.W. Du, Removal of chemical oxygen demand (COD) and heavy metals by catalytic ozonation-microbial fuel cell and Acidithiobacillus ferrooxidans leaching in flotation wastewater (FW), Water Sci. Technol. 79(12) (2019) 2328–2336. [32] B.J. Yang, M. Gan, W. Luo, S. Zhou, P. Lei, J. Zeng, W. Sun, J.Y. Zhu, Y.H. Hu, Synergistic catalytic effects of visible light and graphene on bioleaching of chalcopyrite, RSC Adv 7(79) (2017) 49838–49848. [33] C.K. Tanne, A. Schippers, Electrochemical investigation of chalcopyrite (bio) leaching residues, Hydrometallurgy 187(2019) 8–17. [34] H.B. Zhao, X.W. Gan, J. Wang, L. Tao, W.Q. Qin, G.Z. Qiu, Stepwise bioleaching of Cu-Zn mixed ores with comprehensive utilization of silver-bearing solid waste through a new technique process, Hydrometallurgy 171(2017) 374–386. [35] H.B. Zhao, J. Wang, X.W. Gan, M.H. Hu, E.X. Zhang, W.Q. Qin, G.Z. Qiu, Cooperative bioleaching of chalcopyrite and silver-bearing tailing by mixed moderately thermophilic culture: An emphasis on the chalcopyrite dissolution with XPS and electrochemical analysis, Miner. Eng. 81(2015) 29–39. [36] M. Gericke, Y. Govender, A. Pinches, Tank bioleaching of low-grade chalcopyrite concentrates using redox control, Hydrometallurgy 104(3–4) (2010) 414–419. [37] D.L. Bampole, P. Luis, A.F. Mulaba-Bafubiandi, Sustainable copper extraction from mixed chalcopyrite-chalcocite using biomass, Trans. Nonferrous Met. Soc. China 29(10) (2019) 2170–2182. [38] D.X. Makaula, R.J. Huddy, M.A. Fagan-Endres, S.T.L. Harrison, Cross-correlating analyses of mineral-associated microorganisms in an unsaturated packed bed flow-through column test; cell number, activity and EPS, Res. Microbiol. 171(7) (2020) 222–229. [39] S.S. Feng, Y.J. Yin, Z.W. Yin, H.L. Zhang, D.Q. Zhu, Y.J. Tong, H.L. Yang, Simultaneously enhance iron/sulfur metabolism in column bioleaching of chalcocite by pyrite and sulfur oxidizers based on joint utilization of waste resource, Environ. Res. 194(2021) 110702. [40] T.J. Peng, D. Zhou, X.D. Liu, R.L. Yu, T. Jiang, G.H. Gu, M. Chen, G.Z. Qiu, W.M. Zeng, Enrichment of ferric iron on mineral surface during bioleaching of chalcopyrite, Trans. Nonferrous Met. Soc. China 26(2) (2016) 544–550. [41] R.H. Liu, J. Chen, W.B. Zhou, H.N. Cheng, H.B. Zhou, Insight to the early-stage adsorption mechanism of moderately thermophilic consortia and intensified bioleaching of chalcopyrite, Biochem. Eng. J. 144(2019) 40–47. [42] J. Wang, X.W. Gan, H.B. Zhao, M.H. Hu, K.Y. Li, W.Q. Qin, G.Z. Qiu, Dissolution and passivation mechanisms of chalcopyrite during bioleaching: DFT calculation, XPS and electrochemistry analysis, Miner. Eng. 98(2016) 264–278. [43] H. Liu, X.C. Lu, L.J. Zhang, W.L. Xiang, X.Y. Zhu, J. Li, X.L. Wang, J.J. Lu, R.C. Wang, Collaborative effects of Acidithiobacillus ferrooxidans and ferrous ions on the oxidation of chalcopyrite, Chem. Geol. 493(2018) 109–120. [44] H.B. Zhao, J. Wang, W.Q. Qin, M.H. Hu, S. Zhu, G.Z. Qiu, Electrochemical dissolution process of chalcopyrite in the presence of mesophilic microorganisms, Miner. Eng. 71(2015) 159–169. [45] C.R. Yang, F. Jiao, W.Q. Qin, Co-bioleaching of chalcopyrite and silver-bearing bornite in a mixed moderately thermophilic culture, Minerals 8(1) (2017) 4. [46] G. Donnay, L.M. Corliss, J.D.H. Donnay, N. Elliott, J.M. Hastings, Symmetry of magnetic structures: magnetic structure of chalcopyrite, Phys. Rev. 112(6) (1958) 1917. [47] H.B. Zhao, X.T. Huang, J. Wang, Y.N. Li, R. Liao, X.X. Wang, X. Qiu, Y.M. Xiong, W. Q. Qin, G.Z. Qiu, Comparison of bioleaching and dissolution process of p-type and n-type chalcopyrite, Miner. Eng. 109(2017) 153–161. [48] X.Y. Meng, H.B. Zhao, M.L. Sun, Y.S. Zhang, Y.J. Zhang, X. Lv, H. Kim, M. Vainshtein, S. Wang, G.Z. Qiu, The role of cupric ions in the oxidative dissolution process of marmatite: A dependence on Cu2+ concentration, Sci. Total Environ. 675(2019) 213–223. [49] S. Deng, G.H. Gu, An electrochemical impedance spectroscopy study of arsenopyrite oxidation in the presence of Sulfobacillus thermosulfidooxidans, Electrochim. Acta 287(2018) 106–114. [50] J.F. Li, C.Y. Zhong, J.R. Huang, Y.B. Chen, Z. Wang, Z.Q. Liu, Carbon dots decorated three-dimensionally ordered macroporous bismuth-doped titanium dioxide with efficient charge separation for high performance photocatalysis, J. Colloid Interface Sci. 553(2019) 758–767. [51] R.B. Wei, Z.L. Huang, G.H. Gu, Z. Wang, L.X. Zeng, Y.B. Chen, Z.Q. Liu, Dualcocatalysts decorated rimous CdS spheres advancing highly-efficient visiblelight photocatalytic hydrogen production, Appl. Catal. B: Environ. 231(2018) 101–107. [52] S. Deng, G.H. Gu, B.K. Xu, L.J. Li, B.C. Wu, Surface characterization of arsenopyrite during chemical and biological oxidation, Sci. Total Environ. 626(2018) 349–356. |