[1] X.J. Wei, Y.H. Zhang, H.C. He, D. Gao, J.R. Hu, H.R. Peng, L. Peng, S.H. Xiao, P. Xiao, Carbon-incorporated NiO/Co3O4 concave surface microcubes derived from a MOF precursor for overall water splitting, Chem. Commun. 55(46) (2019) 6515–6518. [2] X. Mao, C.Y. Ling, C. Tang, C. Yan, Z.H. Zhu, A.J. Du, Predicting a new class of metal-organic frameworks as efficient catalyst for bi-functional oxygen evolution/reduction reactions, J. Catal. 367(2018) 206–211. [3] T. Liu, P. Li, N. Yao, T. Kong, G. Cheng, S. Chen, W. Luo, Self-sacrificial templatedirected vapor-phase growth of MOF assemblies and surface vulcanization for efficient water splitting, Adv. Mater. 31(21) (2019) e1806672. [4] C.P. Wang, H.Y. Liu, G. Bian, X. Gao, S. Zhao, Y. Kang, J. Zhu, X.H. Bu, Metal-layer assisted growth of ultralong quasi-2D MOF nanoarrays on arbitrary substrates for accelerated oxygen evolution, Small 15(51) (2019) e1906086. [5] C.F. Zhang, Z.W. Chen, Y.B. Lian, Y.J. Chen, Q. Li, Y.D. Gu, Y.T. Lu, Z. Deng, Y. Peng, Copper-based conductive metal organic framework In-situ grown on copper foam as a bifunctional electrocatalyst, Acta Phys. –Chim. Sin. 35(12) (2019) 1404–1411. [6] X.X. Li, P.Y. Zhu, Q. Li, Y.X. Xu, Y. Zhao, H. Pang, Nitrogen-, phosphorus-doped carbon-carbon nanotube CoP dodecahedra by controlling zinc content for high-performance electrocatalytic oxygen evolution, Rare Met. 39(6) (2020) 680–687. [7] D. Wu, Y.C. Wei, X. Ren, X.Q. Ji, Y.W. Liu, X.D. Guo, Z.A. Liu, A.M. Asiri, Q. Wei, X. P. Sun, Co(OH)2 nanoparticle-encapsulating conductive nanowires array: Room-temperature electrochemical preparation for high-performance water oxidation electrocatalysis, Adv. Mater. 30(9) (2018) 1705366. [8] X.Z. Li, Y.Y. Fang, X.Q. Lin, M. Tian, X.C. An, Y. Fu, R. Li, J. Jin, J.T. Ma, MOF derived Co3O4 nanoparticles embedded in N-doped mesoporous carbon layer/MWCNT hybrids: Extraordinary bi-functional electrocatalysts for OER and ORR, J. Mater. Chem. A 3(33) (2015) 17392–17402. [9] Q. Wang, F.Y. Liu, C.C. Wei, D.D. Li, W.J. Guo, Q. Zhao, High efficiency FeNimetal-organic framework grown in situ on nickel foam for electrocatalytic oxygen evolution, ChemistrySelect 4(19) (2019) 5988–5994. [10] K. Srinivas, Y.J. Lu, Y.F. Chen, W.L. Zhang, D.X. Yang, FeNi3–Fe3O4 heterogeneous nanoparticles anchored on 2D MOF nanosheets/1D CNT matrix as highly efficient bifunctional electrocatalysts for water splitting, ACS Sustainable Chem. Eng. 8(9) (2020) 3820–3831. [11] R.W. Liang, F.F. Jing, L.J. Shen, N. Qin, L. Wu, M@MIL-100(Fe) (M = Au, Pd, Pt) nanocomposites fabricated by a facile photodeposition process: Efficient visible-light photocatalysts for redox reactions in water, Nano Res. 8(10) (2015) 3237–3249. [12] Y.Q. Han, H.T. Xu, Y.Q. Su, Z.L. Xu, K.F. Wang, W.Z. Wang, Noble metal (Pt, Au@Pd) nanoparticles supported on metal organic framework (MOF-74) nanoshuttles as high-selectivity CO2 conversion catalysts, J. Catal. 370(2019) 70–78. [13] B. Ye, R.H. Jiang, Z.B. Yu, Y.P. Hou, J. Huang, B.G. Zhang, Y.Y. Huang, Y.L. Zhang, R.Z. Zhang, Pt (11 1) quantum dot engineered Fe-MOF nanosheet arrays with porous core-shell as an electrocatalyst for efficient overall water splitting, J. Catal. 380(2019) 307–317. [14] X.Y. Li, G.X. Zhu, L.S. Xiao, Y.J. Liu, Z.Y. Ji, X.P. Shen, L.R. Kong, S.A. Shah, Loading of Ag on Fe-Co-S/N-doped carbon nanocomposite to achieve improved electrocatalytic activity for oxygen evolution reaction, J. Alloys Compd. 773(2019) 40–49. [15] X. Ding, Y. Xia, Q. Li, S. Dong, X. Jiao, D. Chen, Interface engineering of Co(OH)2/Ag/FeP hierarchical superstructure as efficient and robust electrocatalyst for overall water splitting, ACS Appl. Mater. Interfaces 11(8) (2019) 7936–7945. [16] R.H. Dong, H.R. Du, Y.X. Sun, K.F. Huang, W. Li, B.Y. Geng, Selective reduction–oxidation strategy to the conductivity-enhancing Ag-decorated Co-based 2D hydroxides as efficient electrocatalyst in oxygen evolution reaction, ACS Sustainable Chem. Eng. 6(10) (2018) 13420–13426. [17] F.Z. Sun, G. Wang, Y.Q. Ding, C. Wang, B.B. Yuan, Y.Q. Lin, NiFe-based metalorganic framework nanosheets directly supported on nickel foam acting as robust electrodes for electrochemical oxygen evolution reaction, Adv. Energy Mater. 8(21) (2018) 1800584.1–1800584.11, https://doi.org/10.1002/aenm.201800584. [18] H. Dong, X. Zhang, X.C. Yan, Y.X. Wang, X.J. Sun, G.L. Zhang, Y.J. Feng, F.M. Zhang, Mixed-metal-cluster strategy for boosting electrocatalytic oxygen evolution reaction of robust metal-organic frameworks, ACS Appl. Mater. Interfaces 11(48) (2019) 45080–45086. [19] J.W. Zhang, G.P. Lu, C. Cai, Self-hydrogen transfer hydrogenolysis of b-O-4 linkages in lignin catalyzed by MIL-100(Fe) supported Pd–Ni BMNPs, Green Chem. 19(19) (2017) 4538–4543. [20] J.J. Duan, S. Chen, C. Zhao, Ultrathin metal-organic framework array for efficient electrocatalytic water splitting, Nat. Commun. 8(1) (2017) 1–7. [21] Q. Wang, C.C. Wei, D.D. Li, W.J. Guo, D.Z. Zhong, Q. Zhao, FeNi-based bimetallic MIL-101 directly applicable as an efficient electrocatalyst for oxygen evolution reaction, Microporous Mesoporous Mater. 286(2019) 92–97. [22] L. Yu, J.F. Yang, B.Y. Guan, Y. Lu, X.W.D. Lou, Hierarchical hollow nanoprisms based on ultrathin Ni-Fe layered double hydroxide nanosheets with enhanced electrocatalytic activity towards oxygen evolution, Angew. Chem. Int. Ed. Engl. 57(1) (2018) 172–176. [23] X.D. Du, X.H. Yi, P. Wang, J.G. Deng, C.C. Wang, Enhanced photocatalytic Cr(VI) reduction and diclofenac sodium degradation under simulated sunlight irradiation over MIL-100(Fe)/g-C3N4 heterojunctions, Chin. J. Catal. 40(1) (2019) 70–79. [24] X.F. Zhang, L. Chang, Z.J. Yang, Y.N. Shi, C. Long, J.Y. Han, B.H. Zhang, X.Y. Qiu, G. D. Li, Z.Y. Tang, Facile synthesis of ultrathin metal-organic framework nanosheets for Lewis acid catalysis, Nano Res. 12(2) (2019) 437–440. [25] N.N. Zhu, X.H. Liu, T. Li, J.G. Ma, P. Cheng, G.M. Yang, Composite system of Ag nanoparticles and metal–organic frameworks for the capture and conversion of carbon dioxide under mild conditions, Inorg. Chem. 56(6) (2017) 3414–3420. [26] R. Canioni, C. Roch-Marchal, F. Sécheresse, P. Horcajada, C. Serre, M. Hardi-Dan, G. Férey, J.M. Grenèche, F. Lefebvre, J.S. Chang, Y.K. Hwang, O. Lebedev, S. Turner, G. van Tendeloo, Stable polyoxometalate insertion within the mesoporous metal organic framework MIL-100(Fe), J. Mater. Chem. 21(4) (2011) 1226–1233. [27] M.F. Qiao, Y. Wang, L. Li, G.Z. Hu, G.A. Zou, X. Mamat, Y.M. Dong, X. Hu, Selftemplated nitrogen-doped mesoporous carbon decorated with double transition-metal active sites for enhanced oxygen electrode catalysis, Rare Met. 39(7) (2020) 824–833. [28] Z.C. Wu, Z.X. Zou, J.S. Huang, F. Gao, Fe-doped NiO mesoporous nanosheets array for highly efficient overall water splitting, J. Catal. 358(2018) 243–252. [29] J. Zhang, L. Yu, Y. Chen, X.F. Lu, S. Gao, X.W.D. Lou, Designed formation of double-shelled Ni-Fe layered-double-hydroxide nanocages for efficient oxygen evolution reaction, Adv. Mater. 32(16) (2020) e1906432. [30] X.Q. Ji, B.P. Liu, X. Ren, X.F. Shi, A.M. Asiri, X.P. Sun, P-doped Ag nanoparticles embedded in N-doped carbon nanoflake: An efficient electrocatalyst for the hydrogen evolution reaction, ACS Sustainable Chem. Eng. 6(4) (2018) 4499–4503. [31] C.Q. Meng, Y. Cao, Y.L. Luo, F. Zhang, Q.Q. Kong, A.A. Alshehri, K.A. Alzahrani, T. S. Li, Q. Liu, X.P. Sun, A Ni-MOF nanosheet array for efficient oxygen evolution electrocatalysis in alkaline media, Inorg. Chem. Front. 8(2021) 3007–3011. [32] F.Q. Zheng, D. Xiang, P. Li, Z.W. Zhang, C. Du, Z.H. Zhuang, X.K. Li, W. Chen, Highly conductive bimetallic Ni–Fe metal organic framework as a novel electrocatalyst for water oxidation, ACS Sustainable Chem. Eng. 7(11) (2019) 9743–9749. [33] Q. Wu, Q.P. Gao, L.M. Sun, H.M. Guo, X.S. Tai, D. Li, L. Liu, C.Y. Ling, X.P. Sun, Facilitating active species by decorating CeO2 on Ni3S2 nanosheets for efficient water oxidation electrocatalysis, Chin. J. Catal. 42(3) (2021) 482–489. [34] Y. Cao, T. Wang, X. Li, L.C. Zhang, Y.L. Luo, F. Zhang, A.M. Asiri, J.M. Hu, Q. Liu, X. P. Sun, A hierarchical CuO@NiCo layered double hydroxide core–shell nanoarray as an efficient electrocatalyst for the oxygen evolution reaction, Inorg. Chem. Front. 8(2021) 3049–3054. [35] T. Shinagawa, A.T. Garcia-Esparza, K. Takanabe, Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion, Sci. Rep. 5(1) (2015) 1–21. [36] J.X. Guo, X.Q. Zhang, Y.F. Sun, L. Tang, Q.Y. Liu, X. Zhang, Loading Pt nanoparticles on metal–organic frameworks for improved oxygen evolution, ACS Sustainable Chem. Eng. 5(12) (2017) 11577–11583. [37] Y.M. Bi, Z. Cai, D.J. Zhou, Y. Tian, Q. Zhang, Q. Zhang, Y. Kuang, Y.P. Li, X.M. Sun, X. Duan, Understanding the incorporating effect of Co2+/Co3+ in NiFe-layered double hydroxide for electrocatalytic oxygen evolution reaction, J. Catal. 358(2018) 100–107. [38] C. Ye, L.C. Zhang, L.C. Yue, B. Deng, Y. Cao, Q. Liu, Y.L. Luo, S.Y. Lu, B.Z. Zheng, X. P. Sun, A NiCo LDH nanosheet array on graphite felt: An efficient 3D electrocatalyst for the oxygen evolution reaction in alkaline media, Inorg. Chem. Front. 12(2021) 3162–3166. [39] Q. Wu, J. Li, T.W. Wu, L. Ji, R. Zhang, P.F. Jiang, H.Y. Chen, R.B. Zhao, A.M. Asiri, X. P. Sun, One-step preparation of cobalt-nanoparticle-embedded carbon for effective water oxidation electrocatalysis, ChemElectroChem 6(7) (2019) 1996–1999. [40] J.W. Li, R.Q. Lian, J.Y. Wang, S. He, S.P. Jiang, Z.B. Rui, Oxygen vacancy defects modulated electrocatalytic activity of iron-nickel layered double hydroxide on Ni foam as highly active electrodes for oxygen evolution reaction, Electrochim. Acta 331(2020) 135395.. [41] M.A. Oliver-Tolentino, J. Vázquez-Samperio, A. Manzo-Robledo, R. de Guadalupe González-Huerta, J.L. Flores-Moreno, D. Ramírez-Rosales, A. Guzmán-Vargas, An approach to understanding the electrocatalytic activity enhancement by superexchange interaction toward OER in alkaline media of Ni-Fe LDH, J. Phys. Chem. C 118(39) (2014) 22432–22438. [42] S. Anantharaj, K. Karthick, M. Venkatesh, T.V.S.V. Simha, A.S. Salunke, L. Ma, H. Liang, S. Kundu, Enhancing electrocatalytic total water splitting at few layer Pt-NiFe layered double hydroxide interfaces, Nano Energy 39(2017) 30–43. |