[1] R. Daghrir, P. Drogui, Tetracycline antibiotics in the environment: a review, Environ. Chem. Lett. 11 (2013) 209-227 [2] D. Fuoco, Classification framework and chemical biology of tetracycline-structure-based drugs, Antibiotics-basel 1 (2012) 1-13 [3] F. Faber, L. Tran, M.X. Byndloss, C.A. Lopez, E.M. Velazquez, T. Kerrinnes, S.P. Nuccio, T. Wangdi, O. Fiehn, R.M. Tsolis, A.J. Baumler, Host-mediated sugar oxidation promotes post-antibiotic pathogen expansion, Nature 534 (2016) 697-699 [4] F. Rivera-Chávez, L.F. Zhang, F. Faber, C.A. Lopez, M.X. Byndloss, E.F. Olsan, G.G. Xu, E.M. Velazquez, C.B. Lebrilla, S.E. Winter, A.J. Bäumler, Depletion of butyrate-producing clostridia from the gut microbiota drives an aerobic luminal expansion of salmonella, Cell Host Microbe 19 (2016) 443-454 [5] Y. Zhong, C.D. Peng, Z.T. He, D.M. Chen, H.L. Jia, J.Z. Zhang, H. Ding, X.F. Wu, Interface engineering of heterojunction photocatalysts based on 1D nanomaterials, Catal. Sci. Technol. 11 (1) (2021) 27-42 [6] J. Deng, Y.D. Su, D. Liu, P.D. Yang, B. Liu, C. Liu, Nanowire photoelectrochemistry, Chem. Rev. 119 (15) (2019) 9221-9259 [7] L. Hao, L. Kang, H.W. Huang, L.Q. Ye, K.L. Han, S.Q. Yang, H.J. Yu, M. Batmunkh, Y.H. Zhang, T.Y. Ma, Surface-halogenation-induced atomic-site activation and local charge separation for superb CO2 photoreduction, Adv. Mater. 31 (25) (2019) 1900546 [8] B. Liu, L.M. Liu, X.F. Lang, H.Y. Wang, X.W. Lou, E.S. Aydil, Doping high-surface-area mesoporous TiO2 microspheres with carbonate for visible light hydrogen production, Energ. Environ. Sci. 7 (8) (2014) 2592-2597 [9] H. Xie, Y.Z. Li, S.F. Jin, J.J. Han, X.J. Zhao, Facile fabrication of 3D-ordered macroporous nanocrystalline iron oxide films with highly efficient visible light induced photocatalytic activity, J. Phys. Chem. C 114 (21) (2010) 9706-9712 [10] G.H. Zhang, Y. Meng, B. Xie, Z.M. Ni, H.F. Lu, S.J. Xia, Precise location and regulation of active sites for highly efficient photocatalytic synthesis of ammonia by facet-dependent BiVO4 single crystals, Appl. Catal. B Environ. 296 (2021) 120379 [11] H.B. Huang, K. Yu, N. Zhang, J.Y. Xu, X.T. Yu, H.X. Liu, H.L. Cao, J. Lu, R. Cao, Localized surface plasmon resonance enhanced visible-light-driven CO2 photoreduction in Cu nanoparticle loaded ZnInS solid solutions, Nanoscale 12 (28) (2020) 15169-15174 [12] Y.F. Qi, W.E. Meador, J. Xiong, M. Abbaszadeh, R.V.K.G. Thirumala, J.H. Delcamp, S. Kundu, G.A. Hill, Q.L. Dai, Structural, optical, photocatalytic, and optoelectronic properties of Zn2SnO4 nanocrystals prepared by hydrothermal method, Nanotechnology 32 (14) (2021) 145702 [13] P. Karaolia, I. Michael-Kordatou, E. Hapeshi, C. Drosou, Y. Bertakis, D. Christofileos, G.S. Armatas, L. Sygellou, T. Schwartz, N.P. Xekoukoulotakis, D. Fatta-Kassinos, Removal of antibiotics, antibiotic-resistant bacteria and their associated genes by graphene-based TiO2 composite photocatalysts under solar radiation in urban wastewaters, Appl. Catal. B Environ. 224 (2018) 810-824 [14] S. Zhang, J.J. Yi, J.R. Chen, Z.L. Yin, T. Tang, W.X. Wei, S.S. Cao, H. Xu, Spatially confined Fe2O3 in hierarchical SiO2@TiO2 hollow sphere exhibiting superior photocatalytic efficiency for degrading antibiotics, Chem. Eng. J. 380 (2020) 122583-122583 [15] R. Dadigala, R. Bandi, M. Alle, B.R. Gangapuram, V. Guttena, J.C. Kin, In-situ fabrication of novel flower like MoS2/CoTiO3 nanorod heterostructures for the recyclable degradation of ciprofloxacin and bisphenol A under sunlight, Chemosphere 281 (2021) 130822 [16] H.J. Gao, X.X. Zhao, H.M. Zhang, J.F. Chen, S.F. Wang, H. Yang, Construction of 2D/0D/2D face-to-face contact g-C3N4@Au@Bi4Ti3O12 heterojunction photocatalysts for degradation of rhodamine B, J. Electron. Mater. 49 (9) (2020) 5248-5259 [17] Z.N. Kayani, H. Bashir, S. Riaz, S. Naseem, Optical properties and antibacterial activity of V doped ZnO used in solar cells and biomedical applications, Mater. Res. Bull. 115 (2019) 121-129 [18] S.Y. Wang, H. Yang, Z. Yi, X.X. Wang, Enhanced photocatalytic performance by hybridization of Bi2WO6 nanoparticles with honeycomb-like porous carbon skeleton, J. Environ. Manage. 248 (2019) 109341 [19] D. Majhi, K. Das, R. Bariki, S. Padhan, A. Mishra, R. Dhiman, P. Dash, B. Nayak, B.G. Mishra, A facile reflux method for in situ fabrication of a non-cytotoxic Bi2S3/β-Bi2O3/ZnIn2S4 ternary photocatalyst: a novel dual Z-scheme system with enhanced multifunctional photocatalytic activity, J. Mater. Chem. A 8 (41) (2020) 21729-21743 [20] T.T. Cheng, H.J. Gao, X.F. Sun, T. Xiao, S.F. Wang, Z. Yi, G.R. Liu, X.X. Wang, H. Yang, An excellent Z-scheme Ag2MoO4/Bi4Ti3O12 heterojunction photocatalyst: construction strategy and application in environmental purification, Adv. Powder Technol. 32 (3) (2021) 951-962 [21] E.H. Zhang, Q.H. Zhu, J.H. Huang, J. Liu, G.Q. Tan, C.J. Sun, T. Li, S. Liu, Y.M. Li, H.Z. Wang, X.D. Wang, Z.H. Wen, F.T. Fan, J.T. Zhang, K. Ariga, Visually resolving the direct Z-scheme heterojunction in CdS@ZnIn2S4 hollow cubes for photocatalytic evolution of H2 and H2O2 from pure water, Appl. Catal. B Environ. 293 (2021) 120213 [22] S.J. Chen, Y.J. Di, H. Li, M.Y. Wang, B. Jia, R. Xu, X.Y. Liu, Efficient photocatalytic dye degradation by flowerlike MoS2/SrFe12O19 heterojunction under visible light, Appl. Surf. Sci. 559 (2021) 149855 [23] O. Lupan, N. Wolff, V. Postica, T. Braniste, I. Paulowicz, V. Hrkac, Y.K. Mishra, I. Tiginyanu, L. Kienle, R. Adelung, Properties of a single SnO2: Zn2SnO4-functionalized nanowire based nanosensor, Ceram. Int. 44 (5) (2018) 4859-4867 [24] T.K. Jia, J.C. An, D.S. Yu, J.L. Li, F. Fu, K. Wang, W.M. Wang, Continuously improved photocatalytic performance of Zn2SnO4/SnO2/Cu2O composites by structural modulation and band alignment modification, Nanomaterials 9 (10) (2019) 1390 [25] P. Junploy, S. Thongtem, T. Thongtem, A. Phuruangrat, Photocatalytic activity of Zn2SnO4-SnO2 nanocomposites produced by sonochemistry in combination with high temperature calcination, Superlattice. Microst. 74 (2014) 173-183 [26] B. Li, E.Y. Guo, C.X. Wang, L.W. Yin, Novel Au inlaid Zn2SnO4/SnO2 hollow rounded cubes for dye-sensitized solar cells with enhanced photoelectric conversion performance, J. Mater. Chem. A 4 (32) (2015) 466-477 [27] Y. Gao, J.F. Wu, X.Q. Xiong, N, Yan, N. Ma, W. Dai, Enhanced dibenzothiophene capture with multimetal-organic frameworks in the presence of benzene and octane, Ind. Eng. Chem. Res. 59 (16) (2020) 7849-7856 [28] J.R. Long, O.M. Yaghi, The pervasive chemistry of metal-organic frameworks, Chem. Soc. Rev. 38 (5) (2009) 1213 [29] S. Rojas, P. Horcajada, Metal-organic frameworks for the removal of emerging organic contaminants in water, Chem. Rev. 120 (2020) 8378-8415 [30] M. Hoop, C.F. Walde, R. Ricco, F. Mushtaq, A. Terzopoulou, X.Z. Chen, A.J. deMello, C.J. Doonan, P. Falcaro, B.J. Nelson, J. Puigmarti-Luis, S. Pane, Biocompatibility characteristics of the metal organic framework ZIF-8 for therapeutical applications, Appl. Mater. Today 11 (2018) 13-21 [31] D. Fairen-Jimenez, S.A. Moggach, M.T. Wharmby, P.A. Wright, S. Parsons, T. Duren, Opening the gate: framework flexibility in ZIF-8 explored by experiments and simulations, J. Am. Chem. Soc. 133 (23) (2011) 8900-8902 [32] Y. Gao, J.F. Wu, J.Q. Wang, Y.X. Fang, S.Y. Zhang, W. Dai, A novel multifunctional p-type semiconductor@MOFs nanoporous platform for simultaneous sensing and photodegradation of tetracycline, ACS Appl. Mater. Inter. 12 (9) (2020) 11036–11044 [33] Y. Gao, J.F. Wu, J.Q. Wang, N. Yan, N. Ma, W. Dai, Design and in situ synthesis of ZnInS@ZIF-8-nanofilms multifunctional nanocomposite: a case application for simultaneous fluorescent sensing and enhanced photocatalytic performance toward antibiotic, Micropor. Mesopor. Mat. 315 (2021) 110916 [34] L.Q. Sun, S. Li, Y.P. Su, D.S. He, Z.T. Zhang, Surface-disorder-engineered Zn2SnO4/SnO2 hollow microboxes with enhanced solar-driven photocatalytic activity, Appl. Surf. Sci. 463 (2019) 474-480 [35] L.Q. Sun, X. Han, Z. Jiang, T.T. Ye, R. Li, X.S. Zhao, X.G. Han, Fabrication of cubic Zn2SnO4/SnO2 complex hollow structures and their sunlight-driven photocatalytic activity, Nanoscale 8 (26) (2016) 12858-12862 [36] W.C. Jiang, Y. Wang, A.M. Xie, F. Wu, Microwave absorption of a TiO2@PPy hybrid and its nonlinear dielectric resonant attenuation mechanism, J. Phys. D Appl. Phys. 49 (38) (2016) 385502 [37] D.Z. Zhang, Z.L. Wu, X.Q. Zong, Y. Zhang, Fabrication of polypyrrole/Zn2SnO4 nanofilm for ultra-highly sensitive ammonia sensing application, Sensor. Actuat. B Chem. 274 (2018) 575-586 [38] L. Lin, T. Zhang, H. Liu, J. Qiu, X. Zhang, In situ fabrication of a perfect Pd/ZnO@ZIF-8 core-shell microsphere as an efficient catalyst by a ZnO support-induced ZIF-8 growth strategy, Nanoscale 7 (17) (2015) 7615-7623 [39] X.B. Wang, J. Liu, S. Leong, X.C. Lin, J. Wei, B. Kong, Y.F. Xu, Z.X. Low, J.F. Yao, H.T. Wang, Rapid construction of ZnO@ZIF-8 heterostructures with size-selective photocatalysis properties, ACS Appl. Materi. Inter. 8 (14) (2016) 9080-9087 [40] X. Yuan, S. Qu, X.Y. Huang, X.G. Xue, C.L. Yuan, S.W. Wang, L. Wei, P. Cai, Design of core-shelled g-C3N4@ZIF-8 photocatalyst with enhanced tetracycline adsorption for boosting photocatalytic degradation, Chem. Eng. J. 416 (2021) 129148 [41] L. Zhang, J. Wang, X.Y. Ren, W.T. Zhang, T.S. Zhang, X.N. Liu, T. Du, T. Li, J.L. Wang, Internally extended growth of core-shell NH2-MIL-101(Al)@ZIF-8 nanoflowers for the simultaneous detection and removal of Cu(II), J. Mater. Chem. A 6 (42) (2018) 21029-21038 [42] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report), Pure Appl. Chem. 87 (9-10) (2015) 1051-1069 [43] X. Li, W.M. He, C.H. Li, B. Song, S.W. Liu, Synergetic surface modulation of ZnO/Pt@ZIF-8 hybrid nanorods for enhanced photocatalytic CO2 valorization, Appl. Catal. B Environ. 287 (2021) 119934 [44] S.W. Liu, F. Chen, S.T. Li, X.X. Peng, Y. Xiong, Enhanced photocatalytic conversion of greenhouse gas CO2 into solar fuels over g-C3N4 nanotubes with decorated transparent ZIF-8 nanoclusters, Appl. Catal. B Environ. 211 (2017) 1-10 [45] C.F. Mu, Y. Zhang, W.Q. Cui, Y.H. Liang, Y.F. Zhu, Removal of bisphenol A over a separation free 3D Ag3PO4-graphene hydrogel via an adsorption-photocatalysis synergy, Appl. Catal. B-Environ. 212 (2017) 41-49 [46] Z. Chen, X.M. Li, Q.X. Xu, Z.L.T. Tao, Three-dimensional network space Ag3PO4/NP-CQDs/rGH for enhanced organic pollutant photodegradation: Synergetic photocatalysis activity/stability and effect of real water quality parameters, Chem. Eng. J. 390 (2020) 124454 [47] L.X. Gao, C.C. Deng, J. Xiong, P.P. Zhu, Q. Chen, K.J. Tan, A sensitive ratiometric fluorescence method for visual detection of aluminum ion based on chelation-enhanced photoluminescence, Microchem. J. 150 (2019) 104096 [48] N. Sharma, K. Yun, Dual sensing of tetracycline and L-lysine using green synthesized carbon dots from nigella sativa seeds, Dyes Pigments 182 (2020) 108640 [49] X.D. Zhu, K. Zhang, Y. Wang, W.W. Long, R.J. Sa, T.F. Liu, J. Lu, Fluorescent metal-organic framework (MOF) as a highly sensitive and quickly responsive chemical sensor for the detection of antibiotics in simulated wastewater, Inorg. Chem. 57 (3) (2018) 1060-1065 [50] B. Zhu, Z. Zong, X. Zhang, D.M. Zhang, L.S. Cui, C.F. Bi, Y.H. Fan, Highly selective and stable Zn(II)-based metal-organic frameworks for the detections of tetracycline antibiotic and acetone in aqueous system, Appl. Organomet. Chem. 34 (7) (2020) e5518 [51] Y. Chen, B.Y. Zhai, Y.N. Liang, Y.C. Li, J. Li, Preparation of CdS/g-C3N4/MOF composite with enhanced visible-light photocatalytic activity for dye degradation, J. Solid State Chem. 274 (2019) 32-39 [52] H. Dai, X.Z. Yuan, L.B. Jiang, H. Wang, J. Zhang, J.J. Zhang, T. Xiong, Recent advances on ZIF-8 composites for adsorption and photocatalytic wastewater pollutant removal: Fabrication, applications and perspective, Coordin. Chem. Rev. 441 (2021) 213985 [53] D.S. Yuan, J. Ding, J. Zhou, L. Wang, H. Wan, W.L. Dai, G.F. Guan, Graphite carbon nitride nanosheets decorated with ZIF-8 nanoparticles: effects of the preparation method and their special hybrid structures on the photocatalytic performance, J. Alloy Compd. 762 (2018) 98-108 [54] M.A. Nasalevich, M. Van der Veen, F. Kapteijn, J. Gascon, Metal-organic frameworks as heterogeneous photocatalysts: advantages and challenges, CrystEngComm, 16 (2014) 4919-4926 [55] X.M. Zhang, H. Wang, M.M. Gao, P.F. Zhao, W.L. Xia, R.L. Yang, Y.C. Huang, L. Wang, M.X. Liu, T. Wei, L. Wang, R.X. Yao, X. Li, Z.J. Fan, Template-directed synthesis of pomegranate-shaped zinc oxide@zeolitic imidazolate framework for visible light photocatalytic degradation of tetracycline, Chemosphere 294 (2022) 133782 [56] J.F. Wu, X.X. Fang, H.T. Dong, L.S. Lian, N. Ma, W. Dai, Bimetallic silver/bismuth-MOFs derived strategy for Ag/AgCl/BiOCl composite with extraordinary visible light-driven photocatalytic activity towards tetracycline, J. Alloy. Compd. 877 (2021) 160262 [57] A. Wang, S.J. Wu, J.L. Dong, R.X. Wang, J.W. Wang, J.L. Zhang, S.X. Zhong, S. Bai, Interfacial facet engineering on the Schottky barrier between plasmonic Au and TiO2 in boosting the photocatalytic CO2 reduction under ultraviolet and visible light irradiation, Chem. Eng. J. 404 (2021) 127145 |