[1] BP Energy Outlook, Country Insight-China, BP, 2018. [2] Wenhuan, Wang, Energy savings in China’s energy sectors and contributions to air pollution reduction in the 12th Five Year Plan, J. Clean. Prod. 200 (2018) 305–317. [3] A.F. Ryzhkov, T.F. Bogatova, L.Y. Zeng, P.V. Osipov, Development of entrained-flow gasification technologies in the Asia-Pacific region (review), Therm. Eng. 63 (11) (2016) 791–801. [4] C. Dai, F. Gu, Thermophoresis effects on gas-particle phases flow behaviors in entrained flow coal gasifier using Eulerian model, Chin. J. Chem. Eng. 25 (6) (2017) 712–721. [5] F.C. Wang, G.S. Yu, H.F. Liu, W.F. Li, Q.H. Guo, J.L. Xu, Y. Gong, H. Zhao, H.F. Lu, Z.J.Shen, Opposed multi-burner gasification technology: Recent process of fundamental research and industrial application, Chin. J. Chem. Eng. 35 (2021) 124–142. [6] X.D. Liu, Z.W. Jin, Y.H. Jing, P.P. Fan, Z.L. Qi, W.R. Bao, J.C. Wang, X.H. Yan, P. Lv, L.P.Dong, Review of the characteristics and graded utilisation of coal gasification slag, Chin. J. Chem. Eng. 35 (2021) 92–106. [7] J. Barroso, J. Ballester, L.M. Ferrer, S.Jiménez, Study of coal ash deposition in an entrained flow reactor: Influence of coal type, blend composition and operating conditions, Fuel Process. Technol. 87 (8) (2006) 737–752. [8] Y. Gong, Q. Zhang, H. Zhu, Q. Guo, G. Yu, Refractory failure in entrained-flow gasifier: Vision-based macrostructure investigation in a bench-scale OMB gasifier, Appl. Energy 205 (2017) 1091–1099. [9] Yan, Gong, Refractory failure in entrained-flow gasifier: Investigation of partitioned erosion characteristics in an industrial opposed multi-burner gasifier, Chem. Eng. Sci. 210 (2019) 115227. [10] S. Wang, W.J. Zhao, Y. Zhang, Q.H. Guo, Y. Gong, T. Wu, G.S.Yu, Interactions of Cr2O3-Al2O3-ZrO2 refractory with slags in an entrained-flow coal-water slurry gasifier, Ceram. Int. 48 (1) (2022) 1197–1207. [11] J.H. Gao, Y.C. Shi, W.G. Su, X.D. Song, J.F. Wang, G.S. Yu, Numerical analysis of fracture failure behavior of refractory lining in coal-water slurry gasifier, ACS Omega 7 (21) (2022) 18041–18051. [12] Jinghong, Gao, Post-mortem analysis of Cr2O3-Al2O3-ZrO2 refractory bricks used in an industrial opposed multi-burner gasifier, Eng. Fail. Anal. 134 (2022) 106017. [13] J.P. Bennett, K.S. Kwong, Failure mechanisms in high chrome oxide gasifier refractories, Metall Mater Trans A 42 (4) (2011) 888–904. [14] K. Lin, Z. Shen, Q. Liang, Z. Dai, J. Xu, X. Guo, X. Liu, Determining criterion of the operating temperature in the refractory brick entrained-flow gasifier based on the coal viscosity characteristics and slag flow process, Chem. Eng. Sci. 250 (2022) 117412. [15] L. Kong, J. Bai, W. Li, Viscosity-temperature property of coal ash slag at the condition of entrained flow gasification: A review, Fuel Process. Technol. 215 (2021) 106751. [16] K. Lin, Z. Shen, Q. Liang, J. Xu, H. Liu, The study of the effect of gas-phase fluctuation on slag flow and refractory brick corrosion in the slag tapping hole of an entrained-flow gasifier, Chin. J. Chem. Eng. 47 (2022) 271–281. [17] Kuo, Lin, The study of slag discharge behavior of entrained-flow gasifier based on the viscosity-temperature characteristics of different types of coals, Fuel 292 (2021) 120314. [18] Huaizhu, Li, Modification of ash flow properties of coal rich in calcium and iron by coal gangue addition, Chin. J. Chem. Eng. 35 (2021) 239–246. [19] Yashi, Ma, Investigation of fluctuation behavior in viscosity of coal slags used in entrained-flow gasifiers, Fuel Process. Technol. 181 (2018) 133–141. [20] Guixuan, Wu, Viscosity model for oxide melts relevant to fuel slags. Part 3: The iron oxide containing low order systems in the system SiO2-Al2O3-CaO-MgO-Na2O-K2O-FeO-Fe2O3, Fuel Process. Technol. 171 (2018) 339–349. [21] G.X. Wu, S. Seebold, E. Yazhenskikh, J. Tanner, K. Hack, M.Müller, Slag mobility in entrained flow gasifiers optimized using a new reliable viscosity model of iron oxide-containing multicomponent melts, Appl. Energy 236 (2019) 837–849. [22] S. Seebold, G.X. Wu, M.Müller, The influence of crystallization on the flow of coal ash-slags, Fuel 187 (2017) 376–387. [23] Binli, Cai, Corrosion of high chromia refractory materials by basic coal slag under simulated coal gasification atmosphere, Ceram. Int. 44 (5) (2018) 4592–4602. [24] J. Sung, Han, Interfacial reaction between magnesia refractory and “FeO”-rich slag: Formation of magnesiowüstite layer, Ceram. Int. 45 (8) (2019) 10481–10491. [25] Z.J. Zhou, Y. Bo, Y.W. Zhang, Z.Y. Huang, L. Chen, L.C. Ge, J.H. Zhou, K.F.Cen, Interactions of high-chromia refractory materials with infiltrating coal slag in the oxidizing atmosphere of a cyclone furnace, Ceram. Int. 40 (3) (2014) 3829–3839. [26] Tetsuya, K. Kaneko, The effects of gasification feedstock chemistries on the infiltration of slag into the porous high chromia refractory and their reaction products, Fuel 115 (2014) 248–263. [27] W.J. Shi, M. Laabs, M. Reinmöller, J. Bai, S. Guhl, L.X. Kong, H.Z. Li, B. Meyer, W.Li, In-situ analysis of the effect of CaO/Fe2O3 addition on ash melting and sintering behavior for slagging-type applications, Fuel 285 (2021) 119090. [28] Kuiyu, Liu, Corrosion of high-chrome refractory materials by high-sodium slag in an entrained-flow gasifier, Ceram. Int. 47 (21) (2021) 30648–30656. [29] Jiuhong, Ma, Erosion mechanism of tabular alumina of various microstructures under different basicity of blast furnace slag, Ceram. Int. 48 (14) (2022) 20409–20417. [30] Dunxiang, Pan, Corrosion mechanism of spray refractory in COREX slag with varying basicity, Ceram. Int. 45 (18) (2019) 24398–24404. [31] V. Marika, Nel, Reducing atmosphere ash fusion temperatures of a mixture of coal-associated minerals—the effect of inorganic additives and ashing temperature, Fuel Process. Technol. 124 (2014) 78–86. [32] Xuan, Weiwei, Crystallization characteristics prediction of coal slags based on SiO2-Al2O3-CaO-Fe2O3-MgO components, J. Ind. Eng. Chem. 59 (2018) 341–349. [33] Jianbo, Li, Effect of coal blending and ashing temperature on ash sintering and fusion characteristics during combustion of Zhundong lignite, Fuel 195 (2017) 131–142. [34] W.A. Calvo, M.L. Dignani, P.G. Galliano, E. Brandaleze, A.G.T. Martínez, Basic slag corrosion of alumina-magnesia-carbon refractory bricks containing Al and Si antioxidants, Int. J. Appl. Ceram. Technol. 19 (4) (2022) 2331–2343. [35] B.L. Cai, H.X. Li, S.X. Zhao, H.G. Sun, P.T. Li, S.Z. Yan, L.G. Wan, G. Wang, Z.M. Cao and Study on the erosion mechanism of acid coal slag interactions with silicon carbide materials in the simulated atmosphere of a coal gasifier, Ceram. Int. 43 (5) (2017) 4419–4426. [36] Wei, Liu, Reactions between magnesia-chrome refractories and copper converter slags: Corrosion behavior and prevention by Fe-rich layer formation, Ceram. Int. 48 (10) (2022) 14813–14824. [37] Wanlin, Wang, Thermodynamic corrosion behavior of Al2O3, ZrO2 and MgO refractories in contact with high basicity refining slag, Ceram. Int. 45 (16) (2019) 20664–20673. [38] T.M. Besmann, Thermochemical modeling of refractory corrosion in slagging coal gasifiers, Calphad 32 (3) (2008) 466–469. [39] M. Ludwig, K. Wiśniewska, E. Śnieżek, I. Jastrzębska, R. Prorok, J.Szczerba, Effect of the chemical composition of slag on the corrosion of calcium zirconate material, Mater. Chem. Phys. 258 (2021) 123844. |