[1] B. Zhang, R. Qiu, L. Lu, X. Chen, C. He, J. Lu, Z.J. Ren, Autotrophic vanadium(V) bioreduction in groundwater by elemental sulfur and zerovalent iron, Environ. Sci. Technol. 52 (13) (2018) 7434–7442. [2] J. Zhang, H.L. Dong, L.D. Zhao, R. McCarrick, A.Agrawal, Microbial reduction and precipitation of vanadium by mesophilic and thermophilic methanogens, Chem. Geol. 370 (2014) 29–39. [3] D.B. Cole, S. Zhang, N.J.Planavsky, A new estimate of detrital redox-sensitive metal concentrations and variability in fluxes to marine sediments, Geochimica Cosmochimica Acta 215 (2017) 337–353. [4] M. Sturini, E. Rivagli, F. Maraschi, A. Speltini, A. Profumo, A. Albini, Photocatalytic reduction of vanadium(V) in TiO2 suspension: Chemometric optimization and application to wastewaters, J. Hazard. Mater. 254-255 (2013) 179–184. [5] M.A. Al-Ghouti, Y.S. Al-Degs, A. Ghrair, H. Khoury, M.Ziedan, Extraction and separation of vanadium and nickel from fly ash produced in heavy fuel power plants, Chem. Eng. J. 173 (1) (2011) 191–197. [6] X.Y. Xiao, M. Yang, Z.H. Guo, Z.C. Jiang, Y.N. Liu, X. Cao, Soil vanadium pollution and microbial response characteristics from stone coal smelting district, Trans. Nonferrous Met. Soc. China 25 (4) (2015): 1271–1278. [7] J. Yang, Y.G. Teng, J. Wu, H.Y. Chen, G.Q. Wang, L.T. Song, W.F. Yue, R. Zuo, Y.Z. Zhai, Current status and associated human health risk of vanadium in soil in China, Chemosphere 171 (2017) 635–643. [8] Hui, Liu, Microbial reduction of vanadium (V) in groundwater: Interactions with coexisting common electron acceptors and analysis of microbial community, Environ. Pollut. 231 (2017) 1362–1369. [9] Haoran, Li, Study on microbial reduction of vanadium matallurgical waste water, Hydrometallurgy 99 (1–2) (2009) 13–17. [10] Aikelaimu, Aihemaiti, Effects of liquid digestate on the valence state of vanadium in plant and soil and microbial community response, Environ. Pollut. 265 (2020) 114916. [11] R.C. Zhang, I. Walder, T. Leiviskä, Pilot-scale field study for vanadium removal from mining-influenced waters using an iron-based sorbent, J Hazard Mater 416 (2021) 125961. [12] B.G. Zhang, L.T. Hao, C.X. Tian, S.H. Yuan, C.P. Feng, J.R. Ni, A.G.L.Borthwick, Microbial reduction and precipitation of vanadium (V) in groundwater by immobilized mixed anaerobic culture, Bioresour. Technol. 192 (2015) 410–417. [13] B.G. Zhang, Y.N. Li, Y.M. Fei, Y.T.Cheng, Novel pathway for vanadium(V) bio-detoxification by gram-positive Lactococcus raffinolactis, Environ. Sci. Technol. 55 (3) (2021) 2121–2131. [14] Samira, Salehi, Enhanced adsorption properties of zirconium modified chitosan-zeolite nanocomposites for vanadium ion removal, Int. J. Biol. Macromol. 164 (2020) 105–120. [15] Samira, Salehi, Preparation and characterization of metal organic framework-derived nanoporous carbons for highly efficient removal of vanadium from aqueous solution, J. Alloys Compd. 812 (2020) 152051. [16] G. Gebremedhin, Aregay, Application of layered double hydroxide enriched with electron rich sulfide moieties (S2O42-) for efficient and selective removal of vanadium (V) from diverse aqueous medium, Sci. Total Environ. 792 (2021) 148543. [17] Cheng, Yang, Deep and efficient removal of vanadium from molybdate solution using magnetic γ-Fe2O3 nanoparticles, Appl. Surf. Sci. 529 (2020) 147060. [18] Pu, Xiong, Precipitation of vanadium using ammonium salt in alkaline and acidic media and the effect of sodium and phosphorus, Hydrometallurgy 180 (2018) 113–120. [19] Dean, Fang, A novel method to remove chromium, vanadium and ammonium from vanadium industrial wastewater using a byproduct of magnesium-based wet flue gas desulfurization, J. Hazard. Mater. 336 (2017) 8–20. [20] Junlin, Chen, Synchronous bio-reduction of uranium(VI) and vanadium(V) in aquifer: Performance and mechanisms, Chemosphere 288 (2022) 132539. [21] M.R. Haak, S.P. Indraratne, Soil amendments for vanadium remediation: A review of remediation of vanadium in soil through chemical stabilization and bioremediation, Environ. Geochem. Health (2023) 1–19. [22] A. Hemmatifar, N. Ozbek, C. Halliday, T. Alan Hatton, Electrochemical selective recovery of heavy metal vanadium oxyanion from continuously flowing aqueous streams, ChemSusChem 13 (15) (2020) 3865–3874. [23] Y.F. Zhang, X.W. Hu, J.X. Yang, L.Y. Chen, W.J. Tao, F.G. Liu, Z.N. Shi, Z.W.Wang, Clean separation of vanadium from NaVO3 in NaF-KF-AlF3 molten salt by electrochemical reduction, Sep. Purif. Technol. 312 (2023) 123389. [24] S. Alka, S. Shahir, N. Ibrahim, M.J. Ndejiko, D.V N. Vo, F.A.Manan, Arsenic removal technologies and future trends: A mini review, J. Clean. Prod. 278 (2021) 123805. [25] Jianing, Liu, Recent advances in removal techniques of vanadium from water: A comprehensive review, Chemosphere 287 (2022) 132021. [26] R.C. Zhang, J.M. Lu, M. Dopson, T. Leiviskä, Vanadium removal from mining ditch water using commercial iron products and ferric groundwater treatment residual-based materials, Chemosphere 286 (Pt 2) (2022) 131817. [27] Y.R. Wang, J.K. Yuan, Y.H. Dai, S.W. Mou, T.M. Xia. Preparation and adsorption performance of hydroxy-ferrum cross-linked rectorite. Journal of Wuhan Institute of Technology (2012). [28] H.C. Kang, G.X. Wang, H.Y. Guo, M. Chen, C.H. Luo, K.P.Yan, Facile synthesis and electrochemical performance of LiFePO4/C composites using Fe-P waste slag, Ind. Eng. Chem. Res. 51 (23) (2012) 7923–7931. [29] Q. Cui, C.H. Luo, G. Li, G.X. Wang, K.P.Yan, Environmentally friendly synthesis of LiFePO4 using Fe-P waste slag and greenhouse gas CO2, Ind. Eng. Chem. Res. 55 (26) (2016) 7069–7075. [30] Q. Zhao, B.B. Yang, H.W. Ren, S.H. Chen, C.H. Luo, Q.D. Li, W. Yang, K.P.Yan, Removal of Cr(VI) from aqueous systems using Fe P slag as a reducing agent, Hydrometallurgy 211 (2022) 105875. [31] Jing, Wen, An efficient utilization of high chromium vanadium slag: Extraction of vanadium based on Manganese carbonate roasting and detoxification processing of chromium-containing tailings, J. Hazard. Mater. 378 (2019) 120733. [32] Jing, Wen, Cleaner extraction of vanadium from vanadium-chromium slag based on MnO2 roasting and Manganese recycle, J. Clean. Prod. 261 (2020) 121205. [33] Ferrovanadium—Determination of vanadium content—The ammonium ferrous sulfate titrimetric method and the potentiometric titrimetric method. GB/T 8704.5-2020[2020-09-01]. [34] J. Wen, T. Jiang, H.Y. Gao, Y.J. Liu, X.L. Zheng, X.X. Xue, Comparison of ultrasound-assisted and regular leaching of vanadium and chromium from roasted high chromium vanadium slag, JOM 70 (2) (2018) 155–160. [35] H. Nassar, H. Fredriksson, On peritectic reactions and transformations in low-alloy steels, Metall Mater Trans A 41 (11) (2010) 2776–2783. [36] X.S. Yang, Z.Y. Zhang, X.L. Wang, L. Yang, B.H. Zhong, J.F.Liu, Thermodynamic study of phosphogypsum decomposition by sulfur, J. Chem. Thermodyn. 57 (2013) 39–45. [37] H.E.M. Hussein, R. Beanland, A. Sanchez, D. Walker, M. Walker, Y.S. Han, J.V.MacPherson, Atomic-scale investigation of the reversible α- to ω-phase lithium ion charge-discharge characteristics of electrodeposited vanadium pentoxide nanobelts, Meet. Abstr. MA2022-01 (50) (2022) 2129. [38] B.B. Wu, J. Ifthikar, D.T. Oyekunle, A. Jawad, Z.Q. Chen, Z.L. Chen, L. Sellaoui, M.Bouzid, Interpret the elimination behaviors of lead and vanadium from the water by employing functionalized biochars in diverse environmental conditions, Sci. Total Environ. 789 (2021) 148031. [39] C.E. Myers, H.F. Franzen, J.W.Anderegg, X-ray photoelectron spectra and bonding in transition-metal phosphides, Inorg. Chem. 24 (12) (1985) 1822–1824. [40] M. Petrowsky, R.Frech, Application of the compensated Arrhenius formalism to dielectric relaxation, J. Phys. Chem. B 113 (50) (2009) 16118–16123. [41] Q. Zheng, Y. Zhang, N. Xue. Migration and coordination of vanadium separating from black shale involved by fluoride, Sep. Purif. Technol. 266 (2021) 118552. |