[1] S. He, D. Jiang, M. Hong, Z. Liu, Hazard-free treatment and resource utilisation of electrolytic manganese residue: A review, J. Clean Prod., 306 (2021) 127224. [2] Y. Zhang, X. Liu, Y. Xu, B. Tang, Y. Wang, E. Mukiza, Synergic effects of electrolytic manganese residue-red mud-carbide slag on the road base strength and durability properties, Constr. Build. Mater., 220 (2019) 364-374. [3] Y. Tian, J. Shu, M. Chen, J. Wang, Y. Wang, Z. Luo, R. Wang, F. Yang, F. Xiu, Z. Sun, Manganese and ammonia nitrogen recovery from electrolytic manganese residue by electric field enhanced leaching, J. Clean Prod., 236 (2019). [4] J. Li, D. Du, Q. Peng, C. Wu, K. Lv, H. Ye, S. Chen, W. Zhan, Activation of silicon in the electrolytic manganese residue by mechanical grinding-roasting, J. Clean Prod., 192 (2018) 347-353. [5] J. Li, Y. Lv, X.K. Jiao, P. Sun, J.X. Li, L. Wuri, T.C. Zhang, Electrolytic manganese residue based autoclaved bricks with Ca(OH)(2) and thermal-mechanical activated K-feldspar additions, Constr. Build. Mater., 230 (2020). [6] M. Somani, M. Datta, G.V. Ramana, I. Hölzle, R. Sundaram, T.R. Sreekrishnan, Effect of depth of landfill on the characteristics of soil-like material of aged waste: a case study of Bhalswa dumpsite, India, J. Mater. Cycles Waste Manag., 24 (2022) 1902-1912. [7] N. Jiang, R. Shang, S.G.J. Heijman, L.C. Rietveld, Adsorption of triclosan, trichlorophenol and phenol by high-silica zeolites: Adsorption efficiencies and mechanisms, Sep. Purif. Technol., 235 (2020) 116152. [8] S. Allen, S. Carr, A. Chapple, A. Dyer, B. Heywood, Ion exchange in the synthetic gismondine, zeolite MAP, Phys. Chem. Chem. Phys., 4 (2002) 2409-2415. [9] X. Ren, Synthesis, growth mechanism and adsorption performance of zeolites based on coal fly ash, PhD Thesis, Zhejiang Uni., 2020. (in Chinese) [10] X. Ren, L. Xiao, R. Qu, S. Liu, D. Ye, H. Song, W. Wu, C. Zheng, X. Wu, X. Gao, Synthesis and characterization of a single phase zeolite A using coal fly ash, RSC Adv., 8 (2018) 42200-42209. [11] C. Martínez, A. Corma, Inorganic molecular sieves: Preparation, modification and industrial application in catalytic processes, Coord. Chem. Rev., 255 (2011) 1558-1580. [12] R. Deng, D. Huang, W. Xue, L. Lei, S. Chen, C. Zhou, X. Liu, X. Wen, B. Li, Eco-friendly remediation for lead-contaminated riverine sediment by sodium lignin sulfonate stabilized nano-chlorapatite, Chem. Eng. J., 397 (2020) 125396. [13] H. Du, N. Harata, F. Li, Responses of riverbed sediment bacteria to heavy metals: Integrated evaluation based on bacterial density, activity and community structure under well-controlled sequencing batch incubation conditions, Water Res., 130 (2018) 115-126. [14] Z. Yu, X. Gao, Y. Yao, X. Zhang, G.-Q. Bian, W.D. Wu, X.D. Chen, W. Li, C. Selomulya, Z. Wu, D. Zhao, Scalable synthesis of wrinkled mesoporous titania microspheres with uniform large micron sizes for efficient removal of Cr(VI), J. Mater. Chem. A, 6 (2018) 3954-3966. [15] N. Murayama, H. Yamamoto, J. Shibata, Zeolite Synthesis from Coal Fly Ash by Hydrothermal Reaction Using Various Alkali Sources, J. Chem. Technol. Biotechnol., 77 (2002) 280-286. [16] H. Chen, R. Liu, Z. Liu, J. Shu, C. Tao, Immobilization of Mn and NH4+-N from electrolytic manganese residue waste, Environ. Sci. Pollut. Res., 23 (2016) 12352-12361. [17] V. Volli, M.K. Purkait, Selective preparation of zeolite X and A from flyash and its use as catalyst for biodiesel production, J. Hazard. Mater., 297 (2015) 101-111. [18] Y.-R. Lee, J.T. Soe, S. Zhang, J.-W. Ahn, M.B. Park, W.-S. Ahn, Synthesis of nanoporous materials via recycling coal fly ash and other solid wastes: A mini review, Chem. Eng. J., 317 (2017) 821-843. [19] A. Iqbal, H. Sattar, R. Haider, S. Munir, Synthesis and characterization of pure phase zeolite 4A from coal fly ash, J. Clean Prod., 219 (2019) 258-267. [20] Y. Chen, A. Armutlulu, W. Sun, W. Jiang, X. Jiang, B. Lai, R. Xie, Ultrafast removal of Cu(II) by a novel hierarchically structured faujasite-type zeolite fabricated from lithium silica fume, Sci. Total Environ., 714 (2020) 136724. [21] Y. Sun, Q. Yue, B. Gao, L. Huang, X. Xu, Q. Li, Comparative study on characterization and adsorption properties of activated carbons with H3PO4 and H4P2O7 activation employing Cyperus alternifolius as precursor, Chem. Eng. J., 181-182 (2012) 790-797. [22] X. Gao, P. Zhang, J. Yang, X. Sun, Y. Fu, K. Shi, Z. Chai, W. Wu, A novel approach for the removal of radiocesium from aqueous solution by ZSM-5 molecular sieve, Appl. Radiat. Isot., 139 (2018) 231-237. [23] Y. He, H. Lin, Y. Dong, B. Li, L. Wang, S. Chu, M. Luo, J. Liu, Zeolite supported Fe/Ni bimetallic nanoparticles for simultaneous removal of nitrate and phosphate: Synergistic effect and mechanism, Chem. Eng. J., 347 (2018) 669-681. [24] K.-W. Jung, S.Y. Lee, J.-W. Choi, Y.J. Lee, A facile one-pot hydrothermal synthesis of hydroxyapatite/biochar nanocomposites: Adsorption behavior and mechanisms for the removal of copper(II) from aqueous media, Chem. Eng. J., 369 (2019) 529-541. [25] S. Hokkanen, A. Bhatnagar, E. Repo, S. Lou, M. Sillanpää, Calcium hydroxyapatite microfibrillated cellulose composite as a potential adsorbent for the removal of Cr(VI) from aqueous solution, Chem. Eng. J., 283 (2016) 445-452. [26] S. Wang, T. Terdkiatburana, M.O. Tade, Adsorption of Cu(II), Pb(II) and humic acid on natural zeolite tuff in single and binary systems, Sep. Purif. Technol., 62 (2008) 64-70. [27] C.X. Li, H. Zhong, S. Wang, J.R. Xue, Z.Y. Zhang, A novel conversion process for waste residue: Synthesis of zeolite from electrolytic manganese residue and its application to the removal of heavy metals, COLLOID SURF. A-PHYSICOCHEM. ENG. ASP., 470 (2015) 258-267. [28] Y. Liu, C. Yan, J. Zhao, Z. Zhang, H. Wang, S. Zhou, L. Wu, Synthesis of zeolite P1 from fly ash under solvent-free conditions for ammonium removal from water, J. Clean Prod., 202 (2018) 11-22. [29] J. Chen, R. Huang, H. Ouyang, G. Yu, Y. Liang, Q. Zheng, Utilization of dredged river sediments to synthesize zeolite for Cd(II) removal from wastewater, J. Clean Prod., 320 (2021) 128861. [30] Y. Zhang, Y. Chen, W. Kang, H. Han, H. Song, C. Zhang, H. Wang, X. Yang, X. Gong, C. Zhai, J. Deng, L. Ai, Excellent adsorption of Zn(II) using NaP zeolite adsorbent synthesized from coal fly ash via stage treatment, J. Clean Prod., 258 (2020) 120736. [31] M.K. Murukutti, H. Jena, Synthesis of nano-crystalline zeolite-A and zeolite-X from Indian coal fly ash, its characterization and performance evaluation for the removal of Cs+ and Sr2+ from simulated nuclear waste, J. Hazard. Mater., 423 (2022) 127085. [32] M. Munthali, M. Elsheikh, E. Johan, N. Matsue, Proton Adsorption Selectivity of Zeolites in Aqueous Media: Effect of Si/Al Ratio of Zeolites, Molecules, 19 (2014) 20468-20481. [33] T.A. Saleh, A. Sarı, M. Tuzen, Effective adsorption of antimony(III) from aqueous solutions by polyamide-graphene composite as a novel adsorbent, Chem. Eng. J., 307 (2017) 230-238. [34] S. Iftekhar, V. Srivastava, M. Sillanpää, Synthesis and application of LDH intercalated cellulose nanocomposite for separation of rare earth elements (REEs), Chem. Eng. J., 309 (2017) 130-139. [35] Y. Zhang, Q. Zou, L. Guo, Air-leakage Model and Sealing Technique With Sealing–Isolation Integration for Gas-drainage Boreholes in Coal Mines, Process Saf. Environ. Prot., 140 (2020) 258-272. [36] Y. Önal, C. Akmil-Başar, D. Eren, Ç. Sarıcı-Özdemir, T. Depci, Adsorption kinetics of malachite green onto activated carbon prepared from Tunçbilek lignite, J. Hazard. Mater., 128 (2006) 150-157. [37] R.M. Ali, H.A. Hamad, M.M. Hussein, G.F. Malash, Potential of using green adsorbent of heavy metal removal from aqueous solutions: Adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis, Ecol. Eng., 91 (2016) 317-332. [38] R. Qiu, F. Cheng, H. Huang, Removal of Cd2+ from aqueous solution using hydrothermally modified circulating fluidized bed fly ash resulting from coal gangue power plant, J. Clean Prod., 172 (2018) 1918-1927. [39] A. Gundogdu, C. Duran, H.B. Senturk, M. Soylak, D. Ozdes, H. Serencam, M. Imamoglu, Adsorption of Phenol from Aqueous Solution on a Low-Cost Activated Carbon Produced from Tea Industry Waste: Equilibrium, Kinetic, and Thermodynamic Study, J. Chem. Eng. Data, 57 (2012) 2733-2743. [40] X. Huang, H. Zhao, X. Hu, F. Liu, L. Wang, X. Zhao, P. Gao, P. Ji, Optimization of preparation technology for modified coal fly ash and its adsorption properties for Cd2+, J. Hazard. Mater., 392 (2020) 122461. [41] Z. Sun, G. Yao, M. Liu, S. Zheng, In situ synthesis of magnetic MnFe2O4/diatomite nanocomposite adsorbent and its efficient removal of cationic dyes, J. Taiwan Inst. Chem. Eng., 71 (2017) 501-509. [42] K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J., 156 (2010) 2-10. [43] B. Hui, Y. Zhang, L. Ye, Preparation of PVA hydrogel beads and adsorption mechanism for advanced phosphate removal, Chem. Eng. J., 235 (2014) 207-214. [44] J. Lin, Y. Zhan, H. Wang, M. Chu, C. Wang, Y. He, X. Wang, Effect of calcium ion on phosphate adsorption onto hydrous zirconium oxide, Chem. Eng. J., 309 (2017) 118-129. [45] M. Ma, H. Gao, Y. Sun, M. Huang, The adsorption and desorption of Ni(II) on Al substituted goethite, J. Mol. Liq., 201 (2015) 30-35. [46] P. Barragán P, M.G. Macedo M, M.T. Olguín, Cadmium sorption by sodium and thiourea-modified zeolite-rich tuffs, J. Environ. Sci., 52 (2017) 39-48. [47] Z. Li, L. Wang, J. Meng, X. Liu, J. Xu, F. Wang, P. Brookes, Zeolite-supported nanoscale zero-valent iron: New findings on simultaneous adsorption of Cd(II), Pb(II), and As(III) in aqueous solution and soil, J. Hazard. Mater., 344 (2018) 1-11. [48] S.Q. Zhang, M. Cui, J.H. Chen, Z.J. Ding, X.C. Wang, Y. Mu, C.G. Meng, Modification of synthetic zeolite X by thiourea and its adsorption for Cd (II), MATER. LETT., 236 (2019) 233-235. [49] S.Y. Zheng, S.Q. Xia, S.W. Han, F.X. Yao, H.T. Zhao, M.H. Huang, beta-Cyclodextrin-loaded minerals as novel sorbents for enhanced adsorption of Cd2+ and Pb2+ from aqueous solutions, Sci. Total Environ., 693 (2019). [50] S. Zhang, T. Lv, Y. Mu, J. Zheng, C. Meng, High adsorption of Cd (II) by modification of synthetic zeolites Y, A and mordenite with thiourea, Chin. J. Chem. Eng., 28 (2020) 3117-3125. [51] W.-M. Xie, F.-P. Zhou, X.-L. Bi, D.-D. Chen, J. Li, S.-Y. Sun, J.-Y. Liu, X.-Q. Chen, Accelerated crystallization of magnetic 4A-zeolite synthesized from red mud for application in removal of mixed heavy metal ions, J. Hazard. Mater., 358 (2018) 441-449. [52] L. Cai, L. Cui, B. Lin, J. Zhang, Z. Huang, Advanced treatment of piggery tail water by dual coagulation with Na+ zeolite and Mg/Fe chloride and resource utilization of the coagulation sludge for efficient decontamination of Cd2+, J. Clean Prod., 202 (2018) 759-769. [53] J.d.C. Izidoro, D.A. Fungaro, J.E. Abbott, S. Wang, Synthesis of zeolites X and A from fly ashes for cadmium and zinc removal from aqueous solutions in single and binary ion systems, Fuel, 103 (2013) 827-834. [54] J. Liu, Z. Huang, J. Sun, Y. Zou, B. Gong, Enhancing the removal performance of Cd(Ⅱ) from aqueous solutions by NaA zeolite through doped thiourea reduced GO which is trapped within zeolite crystals, J. Alloy. Compd., 815 (2020) 152514. [55] X. Pu, L. Yao, L. Yang, W. Jiang, X. Jiang, Utilization of industrial waste lithium-silicon-powder for the fabrication of novel nap zeolite for aqueous Cu(II) removal, J. Clean Prod., 265 (2020) 121822. [56] C. Xiong, W. Wang, F. Tan, F. Luo, J. Chen, X. Qiao, Investigation on the efficiency and mechanism of Cd(II) and Pb(II) removal from aqueous solutions using MgO nanoparticles, J. Hazard. Mater., 299 (2015) 664-674. [57] H. Khallaf, C.-T. Chen, L.-B. Chang, O. Lupan, A. Dutta, H. Heinrich, A. Shenouda, L. Chow, Investigation of chemical bath deposition of CdO thin films using three different complexing agents, Appl. Surf. Sci., 257 (2011) 9237-9242. [58] Z. Yang, X. Chen, S. Li, W. Ma, Y. Li, Z. He, H. Hu, T. Wang, Effective removal of Cd(II) from aqueous solution based on multifunctional nanoporous silicon derived from solar kerf loss waste, J. Hazard. Mater., 385 (2020) 121522. |