[1] R. Joncour, A. Ferreira, N. Duguet, M. Lemaire, Preparation of para-aminophenol from nitrobenzene through bamberger rearrangement using a mixture of heterogeneous and homogeneous acid catalysts, Org. Process Res. Dev. 22 (3) (2018) 312–320. [2] A. Deshpande, F. Figueras, M. Lakshmi Kantam, K. Jeeva Ratnam, R. Sudarshan Reddy, N.S. Sekhar, Environmentally friendly hydrogenation of nitrobenzene to p-aminophenol using heterogeneous catalysts, J. Catal. 275 (2) (2010) 250–256. [3] Y.X. Liu, Y.Y. Fang, X.L. Lu, Z.J. Wei, X.N. Li, Hydrogenation of nitrobenzene to p-aminophenol using Pt/C catalyst and carbon-based solid acid, Chem. Eng. J. 229 (2013) 105–110. [4] S.K. Tanielyan, J.J. Nair, N. Marin, G. Alvez, R.J. McNair, D.J. Wang, R.L. Augustine, Hydrogenation of nitrobenzene to 4-aminophenol over supported platinum catalysts, Org. Process Res. Dev. 11 (4) (2007) 681–688. [5] T.T. Zhang, J.Y. Jiang, Y.H. Wang, Green route for the preparation of p-aminophenol from nitrobenzene by catalytic hydrogenation in pressurized CO2/H2O system, Org. Process Res. Dev. 19 (12) (2015) 2050–2054. [6] Y. Liu, Y. Sheng, Y.C. Yin, J.A. Ren, X.R. Lin, X.J. Zou, X.G. Wang, X.G. Lu, Phosphorus-doped activated coconut shell carbon-anchored highly dispersed Pt for the chemoselective hydrogenation of nitrobenzene to p-aminophenol, ACS Omega 7 (13) (2022) 11217–11225. [7] S.B. Tian, B.X. Wang, W.B. Gong, Z.Z. He, Q. Xu, W.X. Chen, Q.H. Zhang, Y.Q. Zhu, J.R. Yang, Q. Fu, C. Chen, Y.X. Bu, L. Gu, X.M. Sun, H.J. Zhao, D.S. Wang, Y.D. Li, Dual-atom Pt heterogeneous catalyst with excellent catalytic performances for the selective hydrogenation and epoxidation, Nat. Commun. 12 (1) (2021) 3181. [8] T. Sheng, Y.J. Qi, X. Lin, P. Hu, S.G. Sun, W.F. Lin, Insights into the mechanism of nitrobenzene reduction to aniline over Pt catalyst and the significance of the adsorption of phenyl group on kinetics, Chem. Eng. J. 293 (2016) 337–344. [9] Y. Hoshi, E.J. Tada, A. Nishikata, T. Tsuru, Effect of potential cycling on dissolution of equimolar Pt-M (M: Co, Ni, Fe) alloys in sulfuric acid solution, Electrochim. Acta 85 (2012) 268–272. [10] Y. Hoshi, T. Yoshida, A. Nishikata, T. Tsuru, Dissolution of Pt-M (M: Cu, Co, Ni, Fe) binary alloys in sulfuric acid solution, Electrochim. Acta 56 (15) (2011) 5302–5309. [11] W.H. Gong, Z. Jiang, R.F. Wu, Y. Liu, L. Huang, N. Hu, P. Tsiakaras, P.K. Shen, Cross-double dumbbell-like Pt-Ni nanostructures with enhanced catalytic performance toward the reactions of oxygen reduction and methanol oxidation, Appl. Catal. B 246 (2019) 277–283. [12] Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells, n.d. [13] M.P. Humbert, C.A. Menning, J.G. Chen, Replacing bulk Pt in Pt-Ni-Pt bimetallic structures with tungsten monocarbide (WC): Hydrogen adsorption and cyclohexene hydrogenation on Pt-Ni-WC, J. Catal. 271 (1) (2010) 132–139. [14] Y.E. Wu, S.F. Cai, D.S. Wang, W. He, Y.D. Li, Syntheses of water-soluble octahedral, truncated octahedral, and cubic Pt-Ni nanocrystals and their structure-activity study in model hydrogenation reactions, J. Am. Chem. Soc. 134 (21) (2012) 8975–8981. [15] R.J. Gao, J.A. Wang, Z.F. Huang, R.R. Zhang, W. Wang, L. Pan, J.F. Zhang, W.K. Zhu, X.W. Zhang, C.X. Shi, J. Lim, J.J. Zou, Pt/Fe2O3 with Pt–Fe pair sites as a catalyst for oxygen reduction with ultralow Pt loading, Nat. Energy 6 (6) (2021) 614–623. [16] X.W. Zhong, S.L. Ye, J. Tang, Y.M. Zhu, D.J. Wu, M. Gu, H. Pan, B.M. Xu, Engineering Pt and Fe dual-metal single atoms anchored on nitrogen-doped carbon with high activity and durability towards oxygen reduction reaction for zinc-air battery, Appl. Catal. B 286 (2021) 119891. [17] W.B. Zhang, H.Y. Xin, Y.Q. Zhang, X. Jin, P. Wu, W.H. Xie, X.H. L i, Bimetallic Pt-Fe catalysts supported on mesoporous TS-1 microspheres for the liquid-phase selective hydrogenation of cinnamaldehyde, J. Catal. 395 (2021) 375–386. [18] B.Y. Xia, H.B. Wu, N. Li, Y. Yan, X.W.D. Lou, X. Wang, One-pot synthesis of Pt-Co alloy nanowire assemblies with tunable composition and enhanced electrocatalytic properties, Angew. Chem. Int. Ed Engl. 54 (12) (2015) 3797–3801. [19] X.X. Zhu, L. Huang, M. Wei, P. Tsiakaras, P.K. Shen, Highly stable Pt-Co nanodendrite in nanoframe with Pt skin structured catalyst for oxygen reduction electrocatalysis, Appl. Catal. B 281 (2021) 119460. [20] S. Chen, M. Li, M. Gao, J. Jin, M.A. van Spronsen, M.B. Salmeron, P. Yang, High-performance Pt-co nanoframes for fuel-cell electrocatalysis, Nano Lett. 20 (3) (2020) 1974–1979. [21] A.Y. Song, G.X. Lu, Selective oxidation of methylamine over zirconia supported Pt-Ru, Pt and Ru catalysts, Chin. J. Chem. Eng. 23 (7) (2015) 1206–1213. [22] L. Zhang, R. Si, H. Liu, N. Chen, Q. Wang, K. Adair, Z. Wang, J. Chen, Z. Song, J. Li, M.N. Banis, R. Li, T.K. Sham, M. Gu, L.M. Liu, G.A. Botton, X. Sun, Atomic layer deposited Pt-Ru dual-metal dimers and identifying their active sites for hydrogen evolution reaction, Nat. Commun. 10 (1) (2019) 4936. [23] V.R. Stamenkovic, B.S. Mun, K.J. Mayrhofer, P.N. Ross, N.M. Markovic, Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces, J. Am. Chem. Soc. 128 (27) (2006) 8813–8819. [24] J.S. Bunch, A.M. van der Zande, S.S. Verbridge, I.W. Frank, D.M. Tanenbaum, J.M. Parpia, H.G. Craighead, P.L. McEuen, Electromechanical resonators from graphene sheets, Science 315 (5811) (2007) 490–493. [25] V.R. Stamenkovic, B.S. Mun, M. Arenz, K.J. Mayrhofer, C.A. Lucas, G. Wang, P.N. Ross, N.M. Markovic, Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces, Nat. Mater. 6 (3) (2007) 241–247. [26] D.K. Chen, Z.Y. Li, Y. Zhou, X. Ma, H.Q. Lin, W. Ying, X.S. Peng, Fe3Pt intermetallic nanoparticles anchored on N-doped mesoporous carbon for the highly efficient oxygen reduction reaction, Chem. Commun. 56 (36) (2020) 4898–4901. [27] M. Gong, J. Zhu, M. Liu, P. Liu, Z. Deng, T. Shen, T. Zhao, R. Lin, Y. Lu, S. Yang, Z. Liang, S.M. Bak, E. Stavitski, Q. Wu, R.R. Adzic, H.L. Xin, D. Wang, Optimizing PtFe intermetallics for oxygen reduction reaction: From DFT screening to in situ XAFS characterization, Nanoscale 11 (42) (2019) 20301–20306. [28] M.C. Luo, Y.J. Sun, L. Wang, S.J. Guo, Tuning multimetallic ordered intermetallic nanocrystals for efficient energy electrocatalysis, Adv. Energy Mater. 7 (11) (2017) 1602073. [29] Y.I. Bauman, I.V. Mishakov, Y.V. Rudneva, A.A. Popov, D. Rieder, D.V. Korneev, A.N. Serkova, Y.V. Shubin, A.A. Vedyagin, Catalytic synthesis of segmented carbon filaments via decomposition of chlorinated hydrocarbons on Ni-Pt alloys, Catal. Today 348 (2020) 102–110. [30] M.K. Carpenter, T.E. Moylan, R.S. Kukreja, M.H. Atwan, M.M. Tessema, Solvothermal synthesis of platinum alloy nanoparticles for oxygen reduction electrocatalysis, J. Am. Chem. Soc. 134 (20) (2012) 8535–8542. [31] L.D. Deng, J.W. Wang, Z.K. Wu, C.H. Liu, L. Qing, X.W. Liu, J. Xu, Z.J. Zhou, M.H. Xu, Effects of second metals (M = Fe, Cu, Ga, In, Sn) on the geometric and electronic properties of platinum for the direct dehydrogenation of propane, J. Alloys Compd. 909 (2022) 164820. [32] Y. Xiong, J.C. Dong, Z.Q. Huang, P.Y. Xin, W.X. Chen, Y. Wang, Z. Li, Z. Jin, W. Xing, Z.B. Zhuang, J.Y. Ye, X. Wei, R. Cao, L. Gu, S.G. Sun, L. Zhuang, X.Q. Chen, H. Yang, C. Chen, Q. Peng, C.R. Chang, D.S. Wang, Y.D. Li, Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation, Nat. Nanotechnol. 15 (5) (2020) 390–397. [33] N. Zhang, A. Jalil, D.X. Wu, S.M. Chen, Y.F. Liu, C. Gao, W. Ye, Z.M. Qi, H.X. Ju, C.M. Wang, X.J. Wu, L. Song, J.F. Zhu, Y.J. Xiong, Refining defect states in W18O49 by Mo doping: A strategy for tuning N2 activation towards solar-driven nitrogen fixation, J. Am. Chem. Soc. 140 (30) (2018) 9434–9443. [34] J.W. An, X.H. Wang, J.X. Zhao, S.H. Jiang, Y.H. Quan, Y.L. Pei, M.M. Wu, J. Ren, Density-functional theory study on hydrogenation of dimethyl oxalate to methyl glycolate over copper catalyst: Effect of copper valence state, Mol. Catal. 482 (2020) 110667. [35] J.M. Nadgeri, N.S. Biradar, P.B. Patil, S.T. Jadkar, A.C. Garade, C.V. Rode, Control of competing hydrogenation of phenylhydroxylamine to aniline in a single-step hydrogenation of nitrobenzene to p-aminophenol, Ind. Eng. Chem. Res. 50 (9) (2011) 5478–5484. [36] B.H. Zhao, B.H. Yan, Z. Jiang, S.Y. Yao, Z.Y. Liu, Q.Y. Wu, R. Ran, S.D. Senanayake, D. Weng, J.G. Chen, High selectivity of CO2 hydrogenation to CO by controlling the valence state of nickel using perovskite, Chem. Commun. 54 (53) (2018) 7354–7357. [37] S.Y. Long, L.Y. Zhang, Z.Y. Liu, H.B. Jiao, A.W. Lei, W. Gong, X.L. Pei, Fabrication of biomass derived Pt-Ni bimetallic catalyst and its selective hydrogenation for 4-nitrostyrene, Nanomaterials 12 (17) (2022) 2968. [38] S.T. Qi, B.A. Cheney, R.Y. Zheng, W.W. Lonergan, W.T. Yu, J.G. Chen, The effects of oxide supports on the low temperature hydrogenation activity of acetone over Pt/Ni bimetallic catalysts on SiO2, γ-Al2O3 and TiO2, Appl. Catal. A 393 (1–2) (2011) 44–49. [39] L.Z. Bu, J.B. Ding, S.J. Guo, X. Zhang, D. Su, X. Zhu, J.L. Yao, J. Guo, G. Lu, X.Q. Huang, A general method for multimetallic platinum alloy nanowires as highly active and stable oxygen reduction catalysts, Adv. Mater. 27 (44) (2015) 7204–7212. [40] Q.Y. Jia, K. Caldwell, K. Strickland, J.M. Ziegelbauer, Z.Y. Liu, Z.Q. Yu, D.E. Ramaker, S. Mukerjee, Improved oxygen reduction activity and durability of dealloyed PtCo x catalysts for proton exchange membrane fuel cells: Strain, ligand, and particle size effects, ACS Catal. 5 (1) (2015) 176–186. |