[1] J. Ortman, A.H. Lefebvre, Fuel distributions from pressure-swirl atomizers, J. Propuls. Power 1 (1) (1985) 11–15. [2] N. Kraus-Namroży, D. Brzezińska, Effectiveness of swirl water mist nozzles for fire suppression, Int. J. Environ. Res. Public Health 19 (23) (2022) 16328. [3] S. Wang, G. Dorr, M. Khashehchi, X. He, Performance of selected agricultural spray nozzles using particle image velocimetry, J. Agric. Sci. Technol. 17 (2015) 601–613. [4] H. Shrigondekar, A. Chowdhury, S.V. Prabhu, Performance of water mist system with base injection in extinguishing small container fires, J. Loss Prev. Process. Ind. 71 (2021) 104448. [5] Z. Jin, S. Hu, X. Zhu, G. Feng, J. Sun, Research on wet-type swirl dust collection technology and its application in underground excavation tunnels, Adv. Powder Technol. 33 (12) (2022) 103851. [6] M.R. Halder, S.K. Dash, S.K. Som, Initiation of air core in a simplex nozzle and the effects of operating and geometrical parameters on its shape and size, Exp. Therm. Fluid Sci. 26 (8) (2002) 871–878. [7] S.M. Jeng, M.A. Jog, M.A. Benjamin, Computational and experimental study of liquid sheet emanating from simplex fuel nozzle, AIAA J. 36 (1998) 201–207. [8] G. Amini, Liquid flow in a simplex swirl nozzle, Int. J. Multiph. Flow 79 (2016) 225–235. [9] S.K. Som, S.G. Mukherjee, Theoretical and experimental investigations on the formation of air core in a swirl spray atomizing nozzle, Appl. Sci. Res. 36 (3) (1980) 173–196. [10] S.K. Som, G. Biswas, Initiation of air core in a swirl nozzle using time-independent power-law fluids, Acta Mech. 51 (3) (1984) 179–197. [11] J. Jedelsky, M. Maly, N. Pinto del Corral, G. Wigley, L. Janackova, M. Jicha, Air–liquid interactions in a pressure-swirl spray, Int. J. Heat Mass Transf. 121 (2018) 788–804. [12] J.L. Santolaya, L.A. Aísa, E. Calvo, I. García, J.A. García, Analysis by droplet size classes of the liquid flow structure in a pressure swirl hollow cone spray, Chem. Eng. Process: Process. Intensif. 49 (1) (2010) 125–131. [13] H. Li, S. Cryer, L. Acharya, J. Raymond, Video and image classification using atomisation spray image patterns and deep learning, Biosyst. Eng. 200 (2020) 13–22. [14] X.N. Mao, Q.L. Xie, Y. Duan, S.Z. Yu, X.J. Liang, Z.Y. Wu, M.Z. Lu, Y. Nie, Predictive models for characterizing the atomization process in pyrolysis of methyl ricinoleate, Chin. J. Chem. Eng. 28 (4) (2020) 1023–1028. [15] C. Yao, P. Geng, Z. Yin, J. Hu, D. Chen, Y. Ju, Impacts of nozzle geometry on spray combustion of high pressure common rail injectors in a constant volume combustion chamber, Fuel 179 (2016) 235–245. [16] J.P. Wang, C.C. Xu, G. Zhou, Y.S. Zhang, Spray structure and characteristics of a pressure-swirl dust suppression nozzle using a phase Doppler particle analyze, Processes 8 (9) (2020) 1127. [17] S.Z. Yu, Q.L. Xie, X.N. Mao, Y. Duan, Y. Nie, Heat transfer in a novel microwave heating device coupled with atomization feeding, Therm. Sci. 26 (2 Part A) (2022) 1185–1195. [18] Y.C. Sun, Y.F. Fu, B.H. Chen, J.X. Lu, W.Q. Deng, Numerical simulation and experimental study on flow field in a swirl nozzle, Shock. Vib. 2021 (2021) 1–9. [19] J. Wang, C. Xu, Y. Zhang, G. Zhou, Numerical study of the effect of geometric parameters on the internal flow of a pressure nozzle for dustfall, Adv. Powder Technol. 32 (5) (2021) 1561–1572. [20] L. Wang, L.F. Chen, B. Fang, Numerical simulation of internal flow and external atomization in pressure swirl nozzle, J. Phys.: Conf. Ser. 1300 (1) (2019) 012082. [21] A. Belhadef, A. Vallet, M. Amielh, F. Anselmet, Pressure-swirl atomization: Modeling and experimental approaches, Int. J. Multiph. Flow 39 (2012) 13–20. [22] Y.X. Chen, J.W. Luo, F. Wu, Z.W. Zhang, Z.H. Zhao, L.Q. Zhang, C. Luo, X.S. Li, Multi-objective optimization on flow characteristics of pressure swirl nozzle: A LES–VOF simulation, Int. Commun. Heat Mass Transf. 133 (2022) 105926. [23] L.Y.M. Gicquel, G. Staffelbach, T. Poinsot, Large Eddy Simulations of gaseous flames in gas turbine combustion chambers, Prog. Energy Combust. Sci. 38 (6) (2012) 782–817. [24] J. Jedelský, M. Jícha, Spray characteristics and liquid distribution of multi-hole effervescent atomisers for industrial burners, Appl. Therm. Eng. 96 (2016) 286–296. [25] P. Wang, Y. Shi, L. Zhang, Y. Li, Effect of structural parameters on atomization characteristics and dust reduction performance of internal-mixing air-assisted atomizer nozzle, Process. Saf. Environ. Prot. 128 (2019) 316–328. [26] B.H. Bang, Y.I. Kim, C.S. Ahn, S. Jeong, Y. Yoon, S. An, S.S. Yoon, A.L. Yarin, Theoretical model of swirling thick film flow inside converging nozzles of various geometries, Fuel 280 (2020) 118215. [27] J. Xue, M.A. Jog, S.M. Jeng, E. Steinthorsson, M.A. Benjamin, Effect of geometric parameters on simplex atomizer performance, AIAA J. 42 (12) (2004) 2408–2415. [28] G.A. Vijay, N.S.V. Moorthi, A. Manivannan, Internal and external flow characteristics of swirl atomizers: A review, At. Sprays 25 (2) (2015) 153–188. [29] S.L. Li, G.G. Wu, P.F. Wang, Y. Cui, C. Tian, H. Han, A mathematical model for predicting the sauter mean diameter of liquid-medium ultrasonic atomizing nozzle based on orthogonal design, Appl. Sci. 11 (24) (2021) 11628. [30] D.L. Yu, Z.X. Zhu, J.G. Zhou, D.H. Liao, N.X. Wu, Influence of nozzle outlet diameter on the atomization process of zirconia dry granulation, Adv. Mech. Eng. 13 (6) (2021) 168781402110248. [31] A.A. Ibrahim, M.A. Jog, Nonlinear breakup model for a liquid sheet emanating from a pressure-swirl atomizer, J. Eng. Gas Turbines Power 129 (4) (2007) 945–953. [32] N.K. Rizk, A.H. Lefebvre, Internal flow characteristics of simplex swirl atomizers, J. Propuls. Power 1 (3) (1985) 193–199. [33] J. Cui, H. Lai, J. Li, Y. Ma, Visualization of internal flow and the effect of orifice geometry on the characteristics of spray and flow field in pressure-swirl atomizers, Appl. Therm. Eng. 127 (2017) 812–822. [34] E.J. Lee, S.Y. Oh, H.Y. Kim, S.C. James, S.S. Yoon, Measuring air core characteristics of a pressure-swirl atomizer via a transparent acrylic nozzle at various Reynolds numbers, Exp. Therm. Fluid Sci. 34 (8) (2010) 1475–1483. [35] Y. Moon, D. Kim, Y. Yoon, Improved spray model for viscous annular sheets in a swirl injector, J. Propuls. Power 26 (2) (2010) 267–279. [36] Q.F. Fu, L.J. Yang, Y.Y. Qu, B. Gu, Linear stability analysis of a conical liquid sheet, J. Propuls. Power 26 (5) (2010) 955–968. [37] P. Wang, C. Tian, R. Liu, and J. Wang, Mathematical model for multivariate nonlinear prediction of SMD of X-type swirl pressure nozzles, Process. Saf. Environ. Prot. 125 (2019) 228–237. [38] J.L. Santolaya, L.A. Aísa, E. Calvo, I. García, L.M. Cerecedo, Experimental study of near-field flow structure in hollow cone pressure swirl sprays, J. Propuls. Power 23 (2) (2007) 382–389. [39] P. Stähle, H.P. Schuchmann, V. Gaukel, Performance and efficiency of pressure-swirl and twin-fluid nozzles spraying food liquids with varying viscosity, J. Food Process. Eng. 40 (1) (2017) e12317. |