[1] B.L. Phoon, C.C. Ong, M.S. Mohamed Saheed, P.L. Show, J.S. Chang, T.C. Ling, S.S. Lam, J.C. Juan, Conventional and emerging technologies for removal of antibiotics from wastewater, J. Hazard. Mater. 400 (2020) 122961. [2] M.B. Ahmed, J.L. Zhou, H.H. Ngo, W. Guo, Adsorptive removal of antibiotics from water and wastewater: Progress and challenges, Sci. Total Environ. 532 (2015) 112–126. [3] J. Liu, X. Wu, J.J. Liu, C.L. Zhang, Q. Hu, X.H. Hou, Ofloxacin degradation by Fe3O4-CeO2/AC Fenton-like system: Optimization, kinetics, and degradation pathways, Mol. Catal. 465 (2019) 61–67. [4] A. Tawfik, M. Mohsen, S. Ismail, N.S. Alhajeri, A.I. Osman, D.W. Rooney, Methods to alleviate the inhibition of sludge anaerobic digestion by emerging contaminants: A review, Environ. Chem. Lett. 20 (6) (2022) 3811–3836. [5] D.S. Zheng, G.Y. Yin, M. Liu, C. Chen, Y.H. Jiang, L.J. Hou, Y.L. Zheng, A systematic review of antibiotics and antibiotic resistance genes in estuarine and coastal environments, Sci. Total Environ. 777 (2021) 146009. [6] T. Mackul'ak, K. Nagyová, M. Faberová, R. Grabic, O. Koba, M. Gál, L. Birošová, Utilization of Fenton-like reaction for antibiotics and resistant bacteria elimination in different parts of WWTP, Environ. Toxicol. Pharmacol. 40 (2) (2015) 492–497. [7] M. Pazda, J. Kumirska, P. Stepnowski, E. Mulkiewicz, Antibiotic resistance genes identified in wastewater treatment plant systems - A review, Sci. Total Environ. 697 (2019) 134023. [8] M. Yilmaz, T.J. Al-Musawi, M.K. Saloot, A.D. Khatibi, M. Baniasadi, D. Balarak, Synthesis of activated carbon from Lemna minor plant and magnetized with iron (III) oxide magnetic nanoparticles and its application in removal of Ciprofloxacin, Biomass Conv. Bioref. (2022). https://doi.org/10.1007/s13399-021-02279-y. [9] A.A. Alameri, R.H.C. Alfilh, S.A. Awad, G.S. Zaman, T.J. Al-Musawi, M.M. Joybari, D. Balarak, G. McKay, Ciprofloxacin adsorption using magnetic and ZnO nanoparticles supported activated carbon derived from Azolla filiculoides biomass, Biomass Convers. Biorefin. (2022) 1–14. [10] D. Balarak, A.H. Mahvi, S. Shahbaksh, M.A. Wahab, A. Abdala, Adsorptive removal of azithromycin antibiotic from aqueous solution by azolla filiculoides-based activated porous carbon, Nanomaterials 11 (12) (2021) 3281. [11] Y.N. Zhang, Y.G. Zhao, F. Maqbool, Y.B. Hu, Removal of antibiotics pollutants in wastewater by UV-based advanced oxidation processes: Influence of water matrix components, processes optimization and application: A review, J. Water Process. Eng. 45 (2022) 102496. [12] D. Balarak, N. Mengelizadeh, P. Rajiv, K. Chandrika, Photocatalytic degradation of amoxicillin from aqueous solutions by titanium dioxide nanoparticles loaded on graphene oxide, Environ. Sci. Pollut. Res. Int. 28 (36) (2021) 49743–49754. [13] G.Z. Kyzas, N. Mengelizadeh, M.K. Saloot, S. Mohebi, D. Balarak, Sonochemical degradation of ciprofloxacin by hydrogen peroxide and persulfate activated by ultrasound and ferrous ions, Colloids Surf. A 642 (2022) 128627. [14] J. Xie, C. Zhang, T.D. Waite, Hydroxyl radicals in anodic oxidation systems: Generation, identification and quantification, Water Res. 217 (2022) 118425. [15] M. Tyagi, N. Kumari, S. Jagadevan, A holistic Fenton oxidation-biodegradation system for treatment of phenol from coke oven wastewater: Optimization, toxicity analysis and phylogenetic analysis, J. Water Process. Eng. 37 (2020) 101475. [16] F. Furia, M. Minella, F. Gosetti, F. Turci, R. Sabatino, A. Di Cesare, G. Corno, D. Vione, Elimination from wastewater of antibiotics reserved for hospital settings, with a Fenton process based on zero-valent iron, Chemosphere 283 (2021) 131170. [17] L.D. Hao, Q.N. Xia, Q. Zhang, J. Masa, Z.Y. Sun, Improving the performance of metal-organic frameworks for thermo-catalytic CO2 conversion: Strategies and perspectives, Chin. J. Catal. 42 (11) (2021) 1903–1920. [18] S.C. Tian, Y.B. Li, X. Zhao, Cyanide removal with a copper/active carbon fiber Cathode via a combined oxidation of a Fenton-like reaction and in situ generated copper oxides at anode, Electrochim. Acta 180 (2015) 746–755. [19] S.C. Tian, Z.H. Zhang, Photo-electrochemical oxidation of hypophosphite and phosphorous recovery by UV/Fe2+/peroxydisulfate with electrochemical process, Chem. Eng. J. 359 (2019) 1075–1085. [20] X.D. Zhang, J. Wang, B.B. Xiao, Y.J. Pu, Y.C. Yang, J.S. Geng, D.Y. Wang, X.J. Chen, Y.X. Wei, K. Xiong, Y.F. Zhu, Resin-based photo-self-Fenton system with intensive mineralization by the synergistic effect of holes and hydroxyl radicals, Appl. Catal. B 315 (2022) 121525. [21] L.X. Liang, L.W. Wen, Y.Q. Weng, J.X. Song, H.H. Li, Y. Zhang, X. He, W. Zhao, M.X. Zhan, Y. Li, L.G. Lu, Y.J. Xin, C.X. Lu, Homologous-targeted and tumor microenvironment-activated hydroxyl radical nanogenerator for enhanced chemoimmunotherapy of non-small cell lung cancer, Chem. Eng. J. 425 (2021) 131451. [22] J. Xie, J. Ma, S. Zhao, T.D. Waite, Flow anodic oxidation: Towards high-efficiency removal of aqueous contaminants by adsorbed hydroxyl radicals at 1.5 V vs SHE, Water Res. 200 (2021) 117259. [23] X. Gao, Y.Q. Chen, Z.W. Kang, B. Wang, L.Q. Sun, D.P. Yang, W.X. Du, Enhanced degradation of aqueous tetracycline hydrochloride by integrating eggshell-derived CaCO3/CuS nanocomposite with advanced oxidation process, Mol. Catal. 501 (2021) 111380. [24] X.M. Li, J.L. Xu, Z.L. Yang, Efficient catalytic degradation of alkanes in soil by a novel heterogeneous Fenton catalyst of functionalized magnetic biochar, Chemosphere 301 (2022) 134693. [25] B.M. Liu, Y. Teng, X. Zhang, S.L. Pan, H.X. Wu, Novel immobilized polyoxometalate heterogeneous catalyst for the efficient and durable removal of tetracycline in a Fenton-like system, Sep. Purif. Technol. 288 (2022) 120594. [26] G.F. Zhu, Y. Jin, M.Q. Ge, Simple and green method for preparing copper nanoparticles supported on carbonized cotton as a heterogeneous Fenton-like catalyst, Colloids Surf. A 647 (2022) 128978. [27] Z.X. Yang, X.N. Zhang, Y.Y. Li, B. Fu, Y.H. Yang, N.C. Chen, X.L. Wang, Q.L. Xie, Fabrication of KDF-loaded chitosan-oligosaccharide-encapsulated konjac glucomannan/sodium alginate/zeolite P microspheres with sustained-release antimicrobial activity, J. Mol. Struct. 1250 (2022) 131682. [28] G.Y. Zhou, J.M. Luo, C.B. Liu, L. Chu, J.H. Ma, Y.H. Tang, Z.B. Zeng, S.L. Luo, A highly efficient polyampholyte hydrogel sorbent based fixed-bed process for heavy metal removal in actual industrial effluent, Water Res. 89 (2016) 151–160. [29] J.H. Liu, M.J. Ju, D. Guan, W. Song, S.A. Algharib, W.H. Luo, Composite inclusion complexes containing sodium alginate composite nanogels for pH-responsive valnemulin hydrochloride release, J. Mol. Struct. 1263 (2022) 133054. [30] Y.C. Dong, W.J. Dong, Y.N. Cao, Z.B. Han, Z.Z. Ding, Preparation and catalytic activity of Fe alginate gel beads for oxidative degradation of azo dyes under visible light irradiation, Catal. Today 175 (1) (2011) 346–355. [31] R.F.N. Quadrado, A.R. Fajardo, Fast decolorization of azo methyl orange via heterogeneous Fenton and Fenton-like reactions using alginate-Fe2+/Fe3+ films as catalysts, Carbohydr. Polym. 177 (2017) 443–450. [32] G.X. Li, Y.M. Du, Y.Z. Tao, H.B. Deng, X.G. Luo, J.H. Yang, Iron(II) cross-linked chitin-based gel beads: Preparation, magnetic property and adsorption of methyl orange, Carbohydr. Polym. 82 (3) (2010) 706–713. [33] J. Rodríguez-Chueca, A. Mediano, M.P. Ormad, R. Mosteo, J.L. Ovelleiro, Disinfection of wastewater effluents with the Fenton-like process induced by electromagnetic fields, Water Res. 60 (2014) 250–258. [34] M. Aleksić, H. Kušić, N. Koprivanac, D. Leszczynska, A.L. Božić, Heterogeneous Fenton type processes for the degradation of organic dye pollutant in water—the application of zeolite assisted AOPs, Desalination 257 (1–3) (2010) 22–29. [35] L.P. Wu, X.Y. Lin, X.B. Zhou, X.G. Luo, Removal of uranium and fluorine from wastewater by double-functional microsphere adsorbent of SA/CMC loaded with calcium and aluminum, Appl. Surf. Sci. 384 (2016) 466–479. [36] S.C. Bao, M.Y. Tu, H.W. Huang, C. Wang, Y.Y. Chen, B.F. Sun, B.H. Xu, Heterogeneous iron oxide nanoparticles anchored on carbon nanotubes for high-performance lithium-ion storage and fenton-like oxidation, J. Colloid Interface Sci. 601 (2021) 283–293. [37] Y.F. Hu, X.Y. Wei, Y.L. Hu, W. Wang, J.H. Fan, X.T. Liu, W.S. Chai, Z.Y. Zhou, Z.Q. Ren, Facile preparation of sodium alginate-based gel spheres by droplet polymerization method for removal of levofloxacin from aqueous solution, Chem. Eng. J. 392 (2020) 123718. [38] X. Guo, Y. Wang, Y.M. Qin, P.L. Shen, Q. Peng, Structures, properties and application of alginic acid: A review, Int. J. Biol. Macromol. 162 (2020) 618–628. [39] A.R. Studart, U.T. Gonzenbach, E. Tervoort, L.J. Gauckler, Processing routes to macroporous ceramics: A review, J. Am. Ceram. Soc. 89 (6) (2006) 1771–1789. [40] C.J. Liu, F.H. Lei, P.F. Li, K. Wang, J.X. Jiang, A review on preparations, properties, and applications of cis-ortho-hydroxyl polysaccharides hydrogels crosslinked with borax, Int. J. Biol. Macromol. 182 (2021) 1179–1191. [41] F. Ahangaran, A.H. Navarchian, Recent advances in chemical surface modification of metal oxide nanoparticles with silane coupling agents: A review, Adv. Colloid Interface Sci. 286 (2020) 102298. [42] J.F. Huang, Y.T. Li, J.H. Wu, P.Y. Cao, Y.L. Liu, G.B. Jiang, Floatable, macroporous structured alginate sphere supporting iron nanoparticles used for emergent Cr(VI) spill treatment, Carbohydr. Polym. 146 (2016) 115–122. [43] L. Chen, S. Ren, L. Liu, B.X. Su, J. Yang, Z.C. Chen, M.M. Wang, Q.C. Liu, Catalytic performance over Mn-Ce catalysts for NH3-SCR of NO at low temperature: Different zeolite supports, J. Environ. Chem. Eng. 10 (2) (2022) 107167. [44] J.K. Du, J.G. Bao, Y. Liu, S.H. Kim, D.D. Dionysiou, Facile preparation of porous Mn/Fe3O4 cubes as peroxymonosulfate activating catalyst for effective bisphenol A degradation, Chem. Eng. J. 376 (2019) 119193. [45] Z.W. Guo, B.R. Li, M. Xu, Y. Li, Y.S. Yan, Z.L. Da, Crystallinity and thickness modulation of polymeric carbon nitride by dual-functional lithium ions for boosting photocatalytic H2O2 production, Appl. Surf. Sci. 606 (2022) 154733. [46] H.M. Zhang, X. Tong, H.Q. Xiao, H.L. Wang, M. Zhang, X.G. Lu, Z.M. Liu, W.W. Zhou, Promoting the performance of electrooxidation-PMS system for degradation of tetracycline by introduction of MnFe2O4/CNT as a third-electrode, Sep. Purif. Technol. 294 (2022) 121171. [47] D.L. Guo, Y.B. Liu, H.D. Ji, C.C. Wang, B. Chen, C.S. Shen, F. Li, Y.X. Wang, P. Lu, W. Liu, Silicate-enhanced heterogeneous flow-through electro-Fenton system using iron oxides under nanoconfinement, Environ. Sci. Technol. 55 (6) (2021) 4045–4053. [48] L.Q. Li, Y. Deng, J. Ai, L.F. Li, G.Y. Liao, S.W. Xu, D.S. Wang, W.J. Zhang, Fe/Mn loaded sludge-based carbon materials catalyzed oxidation for antibiotic degradation: Persulfate vs H2O2 as oxidant, Sep. Purif. Technol. 263 (2021) 118409. [49] Y.T. Zhu, J.J. Xu, M.D. Chen, Synthesis of La2Ti2O7/Bi5O7I photocatalysts with improved photocatalytic activity for degradation of CIP under visible light, Sep. Purif. Technol. 282 (2022) 120004. [50] A. Deghiche, N. Haddaoui, A. Zerriouh, S.E. Fenni, D. Cavallo, A. Erto, Y. Benguerba, Effect of the stearic acid-modified TiO2 on PLA nanocomposites: Morphological and thermal properties at the microscopic scale, J. Environ. Chem. Eng. 9 (6) (2021) 106541. [51] J.X. Tong, Z.P. Zhu, M.P. He, P. Zhou, Y.K. Jiang, Z.G. Wang, Electrochemical degradation kinetics of cleaning wastewater containing ethylene diamine tetraacetic acid, Sep. Purif. Technol. 276 (2021) 119309. [52] B.O. Ojo, O.A. Arotiba, N. Mabuba, Sonoelectrochemical degradation of ciprofloxacin in water on a Ti/BaTiO3 electrode, J. Environ. Chem. Eng. 10 (2) (2022) 107224. [53] H. Wei, J.Z. Shi, X.Y. Yang, J.W. Wang, K.B. Li, Q. He, CCl4-enhanced ultrasonic irradiation for ciprofloxacin degradation and antibiotic activity, Water Environ. Res. 90 (7) (2018) 579–588. [54] L.M. Bai, Y.Q. Cao, X.D. Pan, Y. Shu, G.H. Dong, M. Zhao, Z.F. Zhang, Y. Wu, B.Q. Wang, Z-scheme Bi2S3/Bi2O2CO3 nanoheterojunction for the degradation of antibiotics and organic compounds in wastewater: Fabrication, application, and mechanism, Surf. Interfaces 36 (2023) 102612. [55] B.S. Ondon, S. Li, Q. Zhou, F. Li, Simultaneous removal and high tolerance of norfloxacin with electricity generation in microbial fuel cell and its antibiotic resistance genes quantification, Bioresour. Technol. 304 (2020) 122984. |