[1] S.A. Chernyak, M. Corda, J.P. Dath, V.V. Ordomsky, A.Y. Khodakov, Light olefin synthesis from a diversity of renewable and fossil feedstocks: State-of the-art and outlook, Chem. Soc. Rev. 51 (18) (2022) 7994-8044. [2] S.M. Sadrameli, Thermal/catalytic cracking of hydrocarbons for the production of olefins: A state-of-the-art review I: Thermal cracking review, Fuel 140 (2015) 102-115. [3] J. Hao, D.G. Cheng, F.Q. Chen, X.L. Zhan, N-Heptane catalytic cracking on ZSM-5 zeolite nanosheets: Effect of nanosheet thickness, Microporous Mesoporous Mater. 310 (2021) 110647. [4] X.X. Zhang, D.G. Cheng, F.Q. Chen, X.L. Zhan, N-Heptane catalytic cracking on hierarchical ZSM-5 zeolite: The effect of mesopores, Chem. Eng. Sci. 168 (2017) 352-359. [5] N. Kumar, Microporous zeolites and related nanoporous materials: Synthesis, characterization and application in catalysis, Catalysts 11 (3) (2021) 382. [6] T.L. Wang, Z.K. Xu, Y.Y. Yue, T.H. Wang, M.G. Lin, H.B. Zhu, Bimetallic PtSn nanoparticles confined in hierarchical ZSM-5 for propane dehydrogenation, Chin. J. Chem. Eng. 41 (2022) 384-391. [7] S.M. Xu, X.X. Zhang, D.G. Cheng, F.Q. Chen, X.H. Ren, Effect of hierarchical ZSM-5 zeolite crystal size on diffusion and catalytic performance of n-heptane cracking, Front. Chem. Sci. Eng. 12 (4) (2018) 780-789. [8] T. Weissenberger, A.G.F. Machoke, J. Bauer, R. Dotzel, J.L. Casci, M. Hartmann, W. Schwieger, Hierarchical ZSM-5 catalysts: The effect of different intracrystalline pore dimensions on catalyst deactivation behaviour in the MTO reaction, ChemCatChem 12 (9) (2020) 2461–2468. [9] D. Schneider, D. Mehlhorn, P. Zeigermann, J. Kärger, R. Valiullin, Transport properties of hierarchical micro-mesoporous materials, Chem. Soc. Rev. 45 (12) (2016) 3439-3467. [10] T. Weissenberger, B. Reiprich, A.G.F. Machoke, K. Klühspies, J. Bauer, R. Dotzel, J.L. Casci, W. Schwieger, Hierarchical MFI type zeolites with intracrystalline macropores: The effect of the macropore size on the deactivation behaviour in the MTO reaction, Catal. Sci. Technol. 9 (12) (2019) 3259-3269. [11] W. Schwieger, A.G. Machoke, T. Weissenberger, A. Inayat, T. Selvam, M. Klumpp, A. Inayat, Hierarchy concepts: Classification and preparation strategies for zeolite containing materials with hierarchical porosity, Chem. Soc. Rev. 45 (12) (2016) 3353-3376. [12] Y.X. Li, C. Luo, X. Wang, C.P. Huang, B.H. Chen, Transalkylation of multi-secbutylbenzenes with benzene over hierarchical beta zeolite, Chin. J. Chem. Eng. 22 (8) (2014) 898-902. [13] E. Kianfar, Nanozeolites: Synthesized, properties, applications, J. Sol Gel Sci. Technol. 91 (2) (2019) 415-429. [14] L.H. Chen, M.H. Sun, Z. Wang, W.M. Yang, Z.K. Xie, B.L. Su, Hierarchically structured zeolites: From design to application, Chem. Rev. 120 (20) (2020) 11194-11294. [15] W. Deng, H. Xuan, C. Zhang, Y.Y. Gao, X.D. Zhu, K.K. Zhu, Q.S. Huo, Z.J. Zhou, Promoting xylene production in benzene methylation using hierarchically porous ZSM-5 derived from a modified dry-gel route, Chin. J. Chem. Eng. 22 (8) (2014) 921-929. [16] A.R. Teixeira, X.D. Qi, C.C. Chang, W. Fan, W.C. Conner, P.J. Dauenhauer, On asymmetric surface barriers in MFI zeolites revealed by frequency response, J. Phys. Chem. C 118 (38) (2014) 22166-22180. [17] S.M. Rao, E. Saraçi, R. Gläser, M.O. Coppens, Surface barriers as dominant mechanism to transport limitations in hierarchically structured catalysts - Application to the zeolite-catalyzed alkylation of benzene with ethylene, Chem. Eng. J. 329 (2017) 45-55. [18] S. Vasenkov, W. Böhlmann, P. Galvosas, O. Geier, H. Liu, J. Kärger, PFG NMR study of diffusion in MFI-type zeolites: Evidence of the existence of intracrystalline transport barriers, J. Phys. Chem. B 105 (25) (2001) 5922-5927. [19] S. Vasenkov, J. Kärger, Evidence for the existence of intracrystalline transport barriers in MFI-type zeolites: A model consistency check using MC simulations, Microporous Mesoporous Mater. 55 (2) (2002) 139-145. [20] Z.Y. Guo, X. Li, S. Hu, G.H. Ye, X.G. Zhou, M.O. Coppens, Understanding the role of internal diffusion barriers in Pt/beta zeolite catalyzed isomerization of n-heptane, Angew. Chem. Int. Ed Engl. 59 (4) (2020) 1548-1551. [21] D.A. Newsome, D.S. Sholl, Molecular dynamics simulations of mass transfer resistance in grain boundaries of twinned zeolite membranes, J. Phys. Chem. B 110 (45) (2006) 22681-22689. [22] T. Titze, C. Chmelik, J. Kullmann, L. Prager, E. Miersemann, R. Gläser, D. Enke, J. Weitkamp, J. Kärger, Microimaging of transient concentration profiles of reactant and product molecules during catalytic conversion in nanoporous materials, Angew. Chem. Int. Ed Engl. 54 (17) (2015) 5060-5064. [23] J. Kärger, T. Binder, C. Chmelik, F. Hibbe, H. Krautscheid, R. Krishna, J. Weitkamp, Microimaging of transient guest profiles to monitor mass transfer in nanoporous materials, Nat. Mater. 13 (4) (2014) 333-343. [24] J. Kärger, P. Kortunov, S. Vasenkov, L. Heinke, D.B. Shah, R.A. Rakoczy, Y. Traa, J. Weitkamp, Unprecedented insight into diffusion by monitoring the concentration of guest molecules in nanoporous host materials, Angew. Chem. Int. Ed Engl. 45 (46) (2006) 7846-7849. [25] S. Hwang, J. Haase, E. Miersemann, J. Kärger, Diffusion analysis in pore hierarchies by the two-region model, Adv. Mater. Interfaces 8 (4) (2021) 2000749. [26] J. Kärger, R. Valiullin, Mass transfer in mesoporous materials: The benefit of microscopic diffusion measurement, Chem. Soc. Rev. 42 (9) (2013) 4172-4197. [27] O.C. Gobin, S.J. Reitmeier, A. Jentys, J.A. Lercher, Comparison of the transport of aromatic compounds in small and large MFI particles, J. Phys. Chem. C 113 (47) (2009) 20435-20444. [28] S.J. Reitmeier, O.C. Gobin, A. Jentys, J.A. Lercher, Influence of postsynthetic surface modification on shape selective transport of aromatic molecules in HZSM-5, J. Phys. Chem. C 113 (34) (2009) 15355-15363. [29] F. Hibbe, C. Chmelik, L. Heinke, S. Pramanik, J. Li, D.M. Ruthven, D. Tzoulaki, J. Kärger, The nature of surface barriers on nanoporous solids explored by microimaging of transient guest distributions, J. Am. Chem. Soc. 133 (2011) 2804-2807. [30] L. Zhang, C. Chmelik, A.N. van Laak, J. Kärger, P.E. de Jongh, K.P. de Jong, Direct assessment of molecular transport in mordenite: Dominance of surface resistances, Chem. Commun. (42) (2009) 6424-6426. [31] D. Chen, H.P. Rebo, A. Holmen, Diffusion and deactivation during methanol conversion over SAPO-34: A percolation approach, Chem. Eng. Sci. 54 (1999) 3465-3473. [32] A.R. Teixeira, C.C. Chang, T. Coogan, R. Kendall, W. Fan, P.J. Dauenhauer, Dominance of surface barriers in molecular transport through silicalite-1, J. Phys. Chem. C 117 (48) (2013) 25545-25555. [33] G.H. Ye, Y.Y. Sun, Z.Y. Guo, K.K. Zhu, H.L. Liu, X.G. Zhou, M.O. Coppens, Effects of zeolite particle size and internal grain boundaries on Pt/Beta catalyzed isomerization of n-pentane, J. Catal. 360 (2018) 152-159. [34] Q. Zhang, A. Mayoral, O. Terasaki, Q. Zhang, B. Ma, C. Zhao, G.J. Yang, J.H. Yu, Amino acid-assisted construction of single-crystalline hierarchical nanozeolites via oriented-aggregation and intraparticle ripening, J. Am. Chem. Soc. 141 (9) (2019) 3772-3776. [35] S. Brandani, E. Mangano, The zero length column technique to measure adsorption equilibrium and kinetics: Lessons learnt from 30 years of experience, Adsorption 27 (3) (2021) 319-351. [36] M.B. Gao, H.A. Li, M.A. Yang, S.S. Gao, P.F. Wu, P. Tian, S.T. Xu, M. Ye, Z.M. Liu, Direct quantification of surface barriers for mass transfer in nanoporous crystalline materials, Commun. Chem. 2 (2019) 43. [37] J.C. Saint Remi, A. Lauerer, C. Chmelik, I. Vandendael, H. Terryn, G.V. Baron, J.F. Denayer, J. Kärger, The role of crystal diversity in understanding mass transfer in nanoporous materials, Nat. Mater. 15 (4) (2016) 401-406. [38] S.C. Peng, M.B. Gao, H. Li, M. Yang, M. Ye, Z.M. Liu, Control of surface barriers in mass transfer to modulate methanol-to-olefins reaction over SAPO-34 zeolites, Angew. Chem. Int. Ed Engl. 59 (49) (2020) 21945-21948. [39] X.X. Zhang, D.G. Cheng, F.Q. Chen, X.L. Zhan, Dealumination kinetics of composite ZSM-5/mordenite zeolite during steam treatment: An in-situ DRIFTS study, Chin. J. Chem. Eng. 26 (3) (2018) 545-550. [40] S. Mintova, J.P. Gilson, V. Valtchev, Advances in nanosized zeolites, Nanoscale 5 (15) (2013) 6693-6703. [41] S.M. Alipour, R. Halladj, S. Askari, Effects of the different synthetic parameters on the crystallinity and crystal size of nanosized ZSM-5 zeolite, Rev. Chem. Eng. 30 (3) (2014) 289-322. [42] L. Tosheva, V.P. Valtchev, Nanozeolites: Synthesis, crystallization mechanism, and applications, Chem. Mater. 17 (10) (2005) 2494-2513. [43] S. Kim, J. Yun, H. Yoo, S. Kim, H.M. Kim, H.S. Lee, Metal-mediated protein assembly using a genetically incorporated metal-chelating amino acid, Biomacromolecules 21 (12) (2020) 5021-5028. [44] M.B. Gao, H.A. Li, M. Ye, Z.M. Liu, An approach for predicting intracrystalline diffusivities and adsorption entropies in nanoporous crystalline materials, Aiche J. 66 (10) (2020) e16991. [45] S. Hu, J.R. Liu, G.H. Ye, X.G. Zhou, M.O. Coppens, W.K. Yuan, Effect of external surface diffusion barriers on Platinum/Beta-catalyzed isomerization of n-pentane, Angew. Chem. Int. Ed Engl. 60 (26) (2021) 14394-14398. [46] L. Gueudré, E. Jolimaîte, N. Bats, W. Dong, Diffusion in zeolites: Is surface resistance a critical parameter? Adsorption 16 (1) (2010) 17-27. [47] X.D. Qi, V. Vattipalli, K. Zhang, P. Bai, P.J. Dauenhauer, W. Fan, Adsorptive nature of surface barriers in MFI nanocrystals, Langmuir 35 (38) (2019) 12407-12417. [48] E.C. Nordvang, E. Borodina, J. Ruiz-Martínez, R. Fehrmann, B.M. Weckhuysen, Effects of coke deposits on the catalytic performance of large zeolite H-ZSM-5 crystals during alcohol-to-hydrocarbon reactions as investigated by a combination of optical spectroscopy and microscopy, Chemistry 21 (48) (2015) 17324-17335. [49] D. Mores, E. Stavitski, M.H.F. Kox, J. Kornatowski, U. Olsbye, B.M. Weckhuysen, Space- and time-resolved in-situ spectroscopy on the coke formation in molecular sieves: Methanol-to-olefin conversion over H-ZSM-5 and H-SAPO-34, Chemistry 14 (36) (2008) 11320-11327. |