[1] X. Gao, T.W. Li, A. Sarkar, L.Q. Lu, W.A. Rogers, Development and validation of an enhanced filtered drag model for simulating gas–solid fluidization of Geldart A particles in all flow regimes, Chem. Eng. Sci. 184 (2018) 33–51. [2] L.Q. Lu, X. Gao, M. Shahnam, W.A. Rogers, Coarse grained computational fluid dynamic simulation of sands and biomass fluidization with a hybrid drag, AIChE. J. 66 (4) (2020) e16867. [3] D.J. Holland, C.R. Müller, J.S. Dennis, L.F. Gladden, A.J. Sederman, Spatially resolved measurement of anisotropic granular temperature in gas-fluidized beds, Powder Technol. 182 (2) (2008) 171–181. [4] L. Glicksman, E. Carr, P. Noymer, Particle injection and mixing experiments in a one-quarter scale model bubbling fluidized bed, Powder Technol. 180 (3) (2008) 284–288. [5] S. Huang, S. Jing, J.F. Wang, Z.W. Wang, Y. Jin, Silica white obtained from rice husk in a fluidized bed, Powder Technol. 117 (3) (2001) 232–238. [6] N. Deen, J. Kuipers, Direct numerical simulation (DNS) of mass, momentum and heat transfer in dense fluid–particle systems, Curr. Opin. Chem. Eng. 5 (2014) 84–89. [7] K. Luo, J.H. Tan, Z.L. Wang, J.R. Fan, Particle-resolved direct numerical simulation of gas–solid dynamics in experimental fluidized beds, AIChE. J. 62 (6) (2016) 1917–1932. [8] T.Y. Wang, S. Wang, Y.S. Shen, Particle-scale study of gas–solid flows in a bubbling fluidised bed: Effect of drag force and collision models, Powder Technol. 384 (2021) 353–367. [9] W. Bian, X.Z. Chen, J.W. Wang, Assessment of the interphase drag coefficients considering the effect of granular temperature or solid concentration fluctuation via comparison of DNS, DPM, TFM and experimental data, Chem. Eng. Sci. 223 (2020) 115722. [10] Z.J. Yang, Y.M. Zhang, A. Oloruntoba, J.R. Yue, MP-PIC simulation of the effects of spent catalyst distribution and horizontal baffle in an industrial FCC regenerator. Part I: Effects on hydrodynamics, Chem. Eng. J. 412 (2021) 128634. [11] M.Y. Feng, F. Li, W. Wang, J.H. Li, Parametric study for MP-PIC simulation of bubbling fluidized beds with Geldart A particles, Powder Technol. 328 (2018) 215–226. [12] J. Chang, Z.J. Wu, X. Wang, W.Y. Liu, Two- and three-dimensional hydrodynamic modeling of a pseudo-2D turbulent fluidized bed with Geldart B particle, Powder Technol. 351 (2019) 159–168. [13] A.H. Ahmadi Motlagh, J.R. Grace, M. Salcudean, C.M. Hrenya, New structure-based model for Eulerian simulation of hydrodynamics in gas–solid fluidized beds of Geldart group “A” particles, Chem. Eng. Sci. 120 (2014) 22–36. [14] S.B. Kuang, M.M. Zhou, A.B. Yu, CFD-DEM modelling and simulation of pneumatic conveying: A review, Powder Technol. 365 (2020) 186–207. [15] J. Horabik, M. Molenda, Parameters and contact models for DEM simulations of agricultural granular materials: A review, Biosyst. Eng. 147 (2016) 206–225. [16] G. Lu, J.R. Third, C.R. Müller, Discrete element models for non-spherical particle systems: From theoretical developments to applications, Chem. Eng. Sci. 127 (2015) 425–465. [17] S. Wang, Eulerian–Lagrangian simulation of dense reactive gas–solid flows in fluidized beds, Ph.D. Thesis, Zhejiang University, China, 2019. (in Chinese) [18] S. Ergun, Fluid flow through packed columns, Chem. Eng. Prog. 48(2) (1952) 89-94. [19] M. Syamlal, T. O'Brien, The derivation of a drag coefficient formula from velocity–voidage correlations, 1987 [2023-05-18], https://www.researchgate.net/publication/242419434. [20] C.Y. Wen, Y.H. Yu, Mechanics of fluidization, Chem. Eng. Prog. Symp. Ser. 62 (1966) 100-111. [21] D. Gidaspow, Multiphase flow and fluidization, continuum and kinetic theory descriptions, J. Non Newton. Fluid Mech. 55 (2) (1994) 207–208. [22] R. Beetstra, M.A. van der Hoef, J.A.M. Kuipers, Drag force of intermediate Reynolds number flow past mono- and bidisperse arrays of spheres, AIChE. J. 53 (2) (2007) 489–501. [23] Y. Tang, E.A.J.F. Peters, J.A.M. Kuipers, S.H.L. Kriebitzsch, M.A. van der Hoef, A new drag correlation from fully resolved simulations of flow past monodisperse static arrays of spheres, AIChE. J. 61 (2) (2015) 688–698. [24] A. Sarkar, F.E. Milioli, S. Ozarkar, T.W. Li, X. Sun, S. Sundaresan, Filtered sub-grid constitutive models for fluidized gas–particle flows constructed from 3-D simulations, Chem. Eng. Sci. 152 (2016) 443–456. [25] S. Radl, S. Sundaresan, A drag model for filtered Euler–Lagrange simulations of clustered gas–particle suspensions, Chem. Eng. Sci. 117 (2014) 416–425. [26] L.P. Wei, Y.J. Lu, Numerical investigation of binary particle mixing in gas–solid fluidized bed with a bubble-based drag EMMS model, Adv. Powder Technol. 31 (4) (2020) 1529–1542. [27] J.H. Li, M. Kwauk, Particle–Fluid Two-Phase Flow: The Energy-Minimization Multi-Scale Method, Metallurgical Industry Press, Beijing, 1994. [28] H. Askaripour, A. Molaei Dehkordi, Simulation of 3D freely bubbling gas–solid fluidized beds using various drag models: TFM approach, Chem. Eng. Res. Des. 100 (2015) 377–390. [29] O.O. Ayeni, C.L. Wu, K. Nandakumar, J.B. Joshi, Development and validation of a new drag law using mechanical energy balance approach for DEM-CFD simulation of gas–solid fluidized bed, Chem. Eng. J. 302 (2016) 395–405. [30] W. Bian, X.Z. Chen, J.W. Wang, A critical comparison of two-fluid model, discrete particle method and direct numerical simulation for modeling dense gas–solid flow of rough spheres, Chem. Eng. Sci. 210 (2019) 115233. [31] C.M. Boyce, A. Ozel, N.P. Rice, G.J. Rubinstein, D.J. Holland, S. Sundaresan, Effective particle diameters for simulating fluidization of non-spherical particles: CFD-DEM models vs. MRI measurements, AIChE. J. 63 (7) (2017) 2555–2568. [32] A. Di Renzo, F. Cello, F.P. Di Maio, Simulation of the layer inversion phenomenon in binary liquid: Fluidized beds by DEM-CFD with a drag law for polydisperse systems, Chem. Eng. Sci. 66 (13) (2011) 2945–2958. [33] W. Du, X.J. Bao, J. Xu, W.S. Wei, Computational fluid dynamics (CFD) modeling of spouted bed: Assessment of drag coefficient correlations, Chem. Eng. Sci. 61 (5) (2006) 1401–1420. [34] E. Esmaili, N. Mahinpey, Adjustment of drag coefficient correlations in three dimensional CFD simulation of gas–solid bubbling fluidized bed, Adv. Eng. Softw. 42 (6) (2011) 375–386. [35] B. Estejab, F. Battaglia, Assessment of drag models for Geldart A particles in bubbling fluidized beds, J. Fluids Eng. 138 (3) (2016) 031105. [36] Y.Q. Feng, A.B. Yu, Assessment of model formulations in the discrete particle simulation of gas–solid flow, Ind. Eng. Chem. Res. 43 (26) (2004) 8378–8390. [37] X. Gao, C. Wu, Y.W. Cheng, L.J. Wang, X. Li, Experimental and numerical investigation of solid behavior in a gas–solid turbulent fluidized bed, Powder Technol. 228 (2012) 1–13. [38] E. Ghadirian, H. Arastoopour, CFD simulation of a fluidized bed using the EMMS approach for the gas–solid drag force, Powder Technol. 288 (2016) 35–44. [39] X.K. Ku, T. Li, T. Løvås, Influence of drag force correlations on periodic fluidization behavior in Eulerian–Lagrangian simulation of a bubbling fluidized bed, Chem. Eng. Sci. 95 (2013) 94–106. [40] J. Li, J.A.M. Kuipers, Gas–particle interactions in dense gas-fluidized beds, Chem. Eng. Sci. 58 (3–6) (2003) 711–718. [41] C. Loha, H. Chattopadhyay, P.K. Chatterjee, Assessment of drag models in simulating bubbling fluidized bed hydrodynamics, Chem. Eng. Sci. 75 (2012) 400–407. [42] M. Lungu, H.T. Wang, J.D. Wang, Y.R. Yang, F.Q. Chen, Two-fluid model simulations of the National Energy Technology Laboratory bubbling fluidized bed challenge problem, Ind. Eng. Chem. Res. 55 (17) (2016) 5063–5077. [43] F. Vejahati, N. Mahinpey, N. Ellis, M.B. Nikoo, CFD simulation of gas–solid bubbling fluidized bed: A new method for adjusting drag law, Can. J. Chem. Eng. 87 (1) (2009) 19–30. [44] C.M. Venier, S. Marquez Damian, N.M. Nigro, Assessment of gas–particle flow models for pseudo-2D fluidized bed applications, Chem. Eng. Commun. 205 (4) (2018) 456–478. [45] T.Y. Wang, T.Q. Tang, Q.H. Gao, Z.G. Yuan, Y.R. He, Experimental and numerical investigations on the particle behaviours in a bubbling fluidized bed with binary solids, Powder Technol. 362 (2020) 436–449. [46] N. Yang, W. Wang, W. Ge, L.N. Wang, J.H. Li, Simulation of heterogeneous structure in a circulating fluidized-bed riser by combining the two-fluid model with the EMMS approach, Ind. Eng. Chem. Res. 43 (18) (2004) 5548–5561. [47] Q. Zhou, J.W. Wang, Coarse grid simulation of heterogeneous gas–solid flow in a CFB riser with EMMS drag model: Effect of inputting drag correlations, Powder Technol. 253 (2014) 486–495. [48] F. Zinani, C.G. Philippsen, M.L.S. Indrusiak, Numerical study of gas–solid drag models in a bubbling fluidized bed, Part. Sci. Technol. 36 (1) (2018) 1–10. [49] V. Agrawal, Y. Shinde, M.T. Shah, R.P. Utikar, V.K. Pareek, J.B. Joshi, Effect of drag models on CFD-DEM predictions of bubbling fluidized beds with Geldart D particles, Adv. Powder Technol. 29 (11) (2018) 2658–2669. [50] X. Gao, T.W. Li, W.A. Rogers, Assessment of mesoscale solid stress in coarse-grid TFM simulation of Geldart A particles in all fluidization regimes, AIChE. J. 64 (10) (2018) 3565–3581. [51] L.T. Zhu, T.A. Bin Rashid, Z.H. Luo, Comprehensive validation analysis of sub-grid drag and wall corrections for coarse-grid two-fluid modeling, Chem. Eng. Sci. 196 (2019) 478–492. [52] C.R. Müller, D.J. Holland, A.J. Sederman, S.A. Scott, J.S. Dennis, L.F. Gladden, Granular temperature: Comparison of magnetic resonance measurements with discrete element model simulations, Powder Technol. 184 (2) (2008) 241–253. [53] V.M. Krushnarao Kotteda, J.A. Stephens, W. Spotz, V. Kumar, A. Kommu, Uncertainty quantification of fluidized beds using a data-driven framework, Powder Technol. 354 (2019) 709–718. [54] A.A. Baharanchi, S. Gokaltun, G. Dulikravich, Performance improvement of existing drag models in two-fluid modeling of gas–solid flows using a PR-DNS based drag model, Powder Technol. 286 (2015) 257–268. [55] P. Gopalakrishnan, D. Tafti, Development of parallel DEM for the open source code MFIX, Powder Technol. 235 (2013) 33–41. [56] Y.T. Makkawi, P.C. Wright, R. Ocone, The effect of friction and inter-particle cohesive forces on the hydrodynamics of gas–solid flow: A comparative analysis of theoretical predictions and experiments, Powder Technol. 163 (1–2) (2006) 69–79. [57] M. Syamlal, W. Rogers, T. O'Brien, MFIX documentation: Theory guide, 1993 [2023-05-18], https://www.osti.gov/biblio/10145548. [58] R. Garg, J. Galvin, T. Li, S. Pannala, Documentation of open-source MFIX–DEM software for gas–solids flows, 2012 [2023-05-18], https://mfix.netl.doe.gov/doc/mfix-archive/mfix_current_documentation/dem_doc_2012-1.pdf. [59] S. Tenneti, R. Garg, S. Subramaniam, Drag law for monodisperse gas–solid systems using particle-resolved direct numerical simulation of flow past fixed assemblies of spheres, Int. J. Multiph. Flow 37 (9) (2011) 1072–1092. [60] M. Zeneli, A. Nikolopoulos, N. Nikolopoulos, P. Grammelis, E. Kakaras, Application of an advanced coupled EMMS-TFM model to a pilot scale CFB carbonator, Chem. Eng. Sci. 138 (2015) 482–498. [61] Y. Wu, D.Y. Liu, J.L. Ma, X.P. Chen, Effects of gas–solid drag model on Eulerian–Eulerian CFD simulation of coal combustion in a circulating fluidized bed, Powder Technol. 324 (2018) 48–61. [62] A. Nikolopoulos, A. Stroh, M. Zeneli, F. Alobaid, N. Nikolopoulos, J. Ströhle, S. Karellas, B. Epple, P. Grammelis, Numerical investigation and comparison of coarse grain CFD-DEM and TFM in the case of a 1 MWth fluidized bed carbonator simulation, Chem. Eng. Sci. 163 (2017) 189–205. [63] J.H. Chen, W.J. Yin, S. Wang, G.B. Yu, T. Hu, F. Lin, Analysis of biomass gasification in bubbling fluidized bed with a revised bubble-based energy minimization multiscale drag model, Chem. Ind. Eng. Prog. 36(4) (2017) 1224-1230. (in Chinese). [64] P.A. Cundall, O. Strack, The distinct element method as a tool for research in granular material, Report to NSF Concerning Grant ENG76–20711, University of Minnesota, USA, 1978. [65] H. Hertz, On the contact of elastic solids, J. Reine und Angew. Math. 92 (1882) 156-171. [66] J.W. Wang, M.A. van der Hoef, J.A.M. Kuipers, Why the two-fluid model fails to predict the bed expansion characteristics of Geldart A particles in gas-fluidized beds: A tentative answer, Chem. Eng. Sci. 64 (3) (2009) 622–625. [67] K. Luo, D. Wang, T. Jin, S. Wang, Z. Wang, J.H. Tan, J.R. Fan, Analysis and development of novel data-driven drag models based on direct numerical simulations of fluidized beds, Chem. Eng. Sci. 231 (2021) 116245. [68] F. Marchelli, Q.F. Hou, B. Bosio, E. Arato, A.B. Yu, Comparison of different drag models in CFD-DEM simulations of spouted beds, Powder Technol. 360 (2020) 1253–1270. [69] J.W. Wang, P. Zhao, B.D. Zhao, Testing CFD-DEM method with a stochastic drag formulation using particle-resolved direct numerical simulation data as benchmark, Chem. Eng. Sci. 240 (2021) 116657. [70] J.T. Zhao, W.C. Liang, J.H. Wu, Y. Wang, CFD simulation of the jetting fluidized bed and analysis of model parameters, Coal Convers. 31(2) (2008) 37-43. (in Chinese). [71] B. Lan, P. Zhao, J. Xu, B.D. Zhao, M. Zhai, J.W. Wang, The critical role of scale resolution in CFD simulation of gas-solid flows: A heat transfer study using CFD-DEM-IBM method, Chem. Eng. Sci. 266 (2023) 118268. [72] Y.L. Tang, E.A.J.F. Peters, J.A.M. Kuipers, Direct numerical simulations of dynamic gas–solid suspensions, AIChE J. 62 (6) (2016) 1958–1969. [73] M.M. Varghese, T.R. Vakamalla, B. Mantravadi, N. Mangadoddy, Effect of drag models on the numerical simulations of bubbling and turbulent fluidized beds, Chem. Eng. Technol. 44 (5) (2021) 865–874. [74] R. Stanly, G. Shoev, Detailed analysis of recent drag models using multiple cases of mono-disperse fluidized beds with Geldart-B and Geldart-D particles, Chem. Eng. Sci. 188 (2018) 132–149. [75] L. He, D.K. Tafti, K. Nagendra, Evaluation of drag correlations using particle resolved simulations of spheres and ellipsoids in assembly, Powder Technol. 313 (2017) 332–343. [76] S. Bogner, S. Mohanty, U. Rüde, Drag correlation for dilute and moderately dense fluid-particle systems using the lattice Boltzmann method, Int. J. Multiph. Flow 68 (2015) 71–79. [77] J. Sun, F. Battaglia, Hydrodynamic modeling of particle rotation for segregation in bubbling gas-fluidized beds, Chem. Eng. Sci. 61 (5) (2006) 1470–1479. [78] C. Goniva, C. Kloss, N.G. Deen, J.A.M. Kuipers, S. Pirker, Influence of rolling friction on single spout fluidized bed simulation, Particuology 10 (5) (2012) 582–591. |