[1] E.D. Sloan Jr, C.A. Koh, C.A. Koh, Clathrate Hydrates of Natural Gases. Boca Raton:CRC Press,(2007). [2] N.N. Nguyen, A.V. Nguyen, The dual effect of sodium halides on the formation of methane gas hydrate, Fuel 156(2015)87-95. [3] Y.L. Li, N.Y. Wu, D.L. Gao, Q. Chen, C.L. Liu, D.Y. Yang, Y.R. Jin, F.L. Ning, M.J. Tan, G.W. Hu, Optimization and analysis of gravel packing parameters in horizontal wells for natural gas hydrate production, Energy 219(2021)119585. [4] Y.L. Li, L. Dong, N.Y. Wu, A. Nouri, H.L. Liao, Q. Chen, J.Y. Sun, C.L. Liu, Influences of hydrate layered distribution patterns on triaxial shearing characteristics of hydrate-bearing sediments, Eng. Geol. 294(2021)106375. [5] P. Ndlovu, S. Babaee, P. Naidoo, Review on CH4-CO2 replacement for CO2 sequestration and CH4/CO2 hydrate formation in porous media, Fuel 320(2022)123795. [6] Y.C. Song, S.J. Wang, Z.C. Cheng, M.X. Huang, Y. Zhang, J.N. Zheng, L.L. Jiang, Y. Liu, Dependence of the hydrate-based CO2 storage process on the hydrate reservoir environment in high-efficiency storage methods, Chem. Eng. J. 415(2021)128937. [7] A. Kumar, H.P. Veluswamy, R. Kumar, P. Linga, Direct use of seawater for rapid methane storage via clathrate (sII) hydrates, Appl. Energy 235(2019)21-30. [8] P. Xiao, B.C. Dong, J. Li, H.L. Zhang, G.J. Chen, C.Y. Sun, X. Huang, An approach to highly efficient filtration of methane hydrate slurry for the continuous hydrate production, Energy 259(2022)124892. [9] J. Mok, W. Choi, Y. Seo, Theoretically achievable efficiency of hydrate-based desalination and its significance for evaluating kinetic desalination performance of gaseous hydrate formers, Desalination 524(2022)115487. [10] C.G. Xu, W.J. Xie, G.S. Chen, X.X. Yan, J. Cai, Z.Y. Chen, X.S. Li, Study on the influencing factors of gas consumption in hydrate-based CO2 separation in the presence of CP by Raman analysis, Energy 198(2020)117316. [11] G. Xu, C.G. Xu, M. Wang, J. Cai, Z.Y. Chen, X.S. Li, Influence of nickel foam on kinetics and separation efficiency of hydrate-based Carbon dioxide separation, Energy 231(2021)120826. [12] A. Hassanpouryouzband, E. Joonaki, M. Vasheghani Farahani, S. Takeya, C. Ruppel, J.H. Yang, N.J. English, J.M. Schicks, K. Edlmann, H. Mehrabian, Z.M. Aman, B. Tohidi, Gas hydrates in sustainable chemistry, Chem. Soc. Rev. 49(15)(2020)5225-5309. [13] M.T. Chen, Y.L. Li, Y.J. Zhang, M.H. Qi, N.Y. Wu, Recent advances in creep behaviors characterization for hydrate-bearing sediment, Renew. Sustain. Energy Rev. 183(2023)113434. [14] The Bakerian Lecture. On some of the combinations of oxymuriatic gas and oxygene, and on the chemical relations of these principles, to inflammable bodies, Phil. Trans. R. Soc. 101(1811)1-35. http://doi.org/10.1098/rstl.1811.0001. [15] R.K. McMullan, G.A. Jeffrey, Polyhedral clathrate hydrates. IX. structure of ethylene oxide hydrate, J. Chem. Phys. 42(8)(1965)2725-2732. [16] T.C.W. Mak, R.K. McMullan, Polyhedral clathrate hydrates. X. structure of the double hydrate of tetrahydrofuran and hydrogen sulfide, J. Chem. Phys. 42(8)(1965)2732-2737. [17] J.A. Ripmeester, J.S. Tse, C.I. Ratcliffe, B.M. Powell, A new clathrate hydrate structure, Nature 325(1987)135-136. [18] J.M. Schicks, Gas hydrates in nature and in the laboratory:Necessary requirements for formation and properties of the resulting hydrate phase, ChemTexts 8(2)(2022)13. [19] C.A. Koh, E.D. Sloan, A.K. Sum, D.T. Wu, Fundamentals and applications of gas hydrates, Annu. Rev. Chem. Biomol. Eng. 2(2011)237-257. [20] E.D. Sloan, S. Subramanian, P.N. Matthews, J.P. Lederhos, A.A. Khokhar, Quantifying hydrate formation and kinetic inhibition, Ind. Eng. Chem. Res. 37(8)(1998)3124-3132. [21] S. Takeya, A. Hori, T. Hondoh, T. Uchida, Freezing-memory effect of water on nucleation of CO2 hydrate crystals, J. Phys. Chem. B 104(17)(2000)4164-4168. [22] Y.F. Makogon, Hydrates of Hydrocarbons, Texas A&M. University.(1997). [23] J.S. Parent, P. Bishnoi, Investigations into the nucleation behaviour of methane gas hydrates, Chem. Eng. Commun. 144(1)(1996)51-64. [24] H. Sefidroodi, E. Abrahamsen, M.A. Kelland, Investigation into the strength and source of the memory effect for cyclopentane hydrate, Chem. Eng. Sci. 87(2013)133-140. [25] C. Giavarini, F. Maccioni, M.L. Santarelli, Formation kinetics of propane hydrates, Ind. Eng. Chem. Res. 42(7)(2003)1517-1521. [26] J.F. Zhao, C.J. Wang, M.J. Yang, W.G. Liu, K. Xu, Y. Liu, Y.C. Song, Existence of a memory effect between hydrates with different structures (I, II, and H), J. Nat. Gas Sci. Eng. 26(2015)330-335. [27] H.P. Veluswamy, G. Bhattacharjee, J.X. Liao, P. Linga, Macroscopic kinetic investigations on mixed natural gas hydrate formation for gas storage application, Energy Fuels 34(12)(2020)15257-15269. [28] M.J. Yang, H. Zhou, P.F. Wang, Y.C. Song, Effects of additives on continuous hydrate-based flue gas separation, Appl. Energy 221(2018)374-385. [29] Y.C. Song, P.F. Wang, L.L. Jiang, Y.C. Zhao, M.J. Yang, Methane hydrate formation/reformation in three experimental modes:A preliminary investigation of blockage prevention during exploitation, J. Nat. Gas Sci. Eng. 27(2015)1814-1820. [30] W. Ke, G.J. Chen, D.Y. Chen, Methane-propane hydrate formation and memory effect study with a reaction kinetics model, Prog. React. Kinet. Mech. 45(2020)146867832090162. [31] H. Thompson, A.K. Soper, P. Buchanan, N. Aldiwan, J.L. Creek, C.A. Koh, Methane hydrate formation and decomposition:Structural studies via neutron diffraction and empirical potential structure refinement, J. Chem. Phys. 124(16)(2006)164508. [32] M. Oshima, W. Shimada, S. Hashimoto, A. Tani, K. Ohgaki, Memory effect on semi-clathrate hydrate formation:A case study of tetragonal tetra-n-butyl ammonium bromide hydrate, Chem. Eng. Sci. 65(20)(2010)5442-5446. [33] P. Buchanan, A.K. Soper, H. Thompson, R.E. Westacott, J.L. Creek, G. Hobson, C.A. Koh, Search for memory effects in methane hydrate:Structure of water before hydrate formation and after hydrate decomposition, J. Chem. Phys. 123(16)(2005)164507. [34] P.M. Rodger, Methane hydrate:Melting and memory, Ann. N Y Acad. Sci. 912(1)(2000)474-482. [35] H. Zeng, L.D. Wilson, V.K. Walker, J.A. Ripmeester, Effect of antifreeze proteins on the nucleation, growth, and the memory effect during tetrahydrofuran clathrate hydrate formation, J. Am. Chem. Soc. 128(9)(2006)2844-2850. [36] H. Zeng, I.L. Moudrakovski, J.A. Ripmeester, V.K. Walker, Effect of antifreeze protein on nucleation, growth and memory of gas hydrates, AlChE. J. 52(9)(2006)3304-3309. [37] T. Uchida, K. Yamazaki, K. Gohara, Generation of micro-and nano-bubbles in water by dissociation of gas hydrates, Korean J. Chem. Eng. 33(5)(2016)1749-1755. [38] T. Uchida, K. Yamazaki, K. Gohara, Gas nanobubbles as nucleation acceleration in the gas-hydrate memory effect, J. Phys. Chem. C 120(47)(2016)26620-26629. [39] C.X. Cheng, F. Wang, T. Qi, P.Y. Xu, Q.G. Zhang, Z.P. Zhang, C. He, J. Zhang, J.L. Zheng, J.F. Zhao, H.Q. Zhang, B. Xiao, Depressurization-induced changes in memory effect of hydrate reformation correlated with sediment morphology, Energy 217(2021)119374. [40] N. Maeda, Interfacial nanobubbles and the memory effect of natural gas hydrates, J. Phys. Chem. C 122(21)(2018)11399-11406. [41] Y.L. Li, N.Y. Wu, C.Q. He, Z.X. Sun, Z.C. Zhang, X.L. Hao, Q. Chen, Q.T. Bu, C.L. Liu, J.Y. Sun, Nucleation probability and memory effect of methane-propane mixed gas hydrate, Fuel 291(2021)120103. [42] L.W. Cheng, J.L. Cui, Z. Li, B. Liu, S. Ban, G.J. Chen, Molecular dynamics simulation of the formation of methane hydrates in the presence of KHIs, Chem. Eng. Sci. 236(2021)116508. [43] D.S. Bai, X.R. Zhang, G.J. Chen, W.C. Wang, Replacement mechanism of methane hydrate with carbon dioxide from microsecond molecular dynamics simulations, Energy Environ. Sci. 5(5)(2012)7033-7041. [44] Q.B. Li, C. Liu, X. Chen, Molecular characteristics of dissociated water with memory effect from methane hydrates, Int. J. Mod. Phys. B 28(10)(2014)1450062. [45] X. Zheng, L.W. Cheng, B. Liu, S. Ban, G.J. Chen, A molecular dynamic simulation on the memory effect of methane hydrate, J. Mol. Liq. 363(2022)119831. [46] S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117(1)(1995)1-19. [47] J.D. Bernal, R.H. Fowler, A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions, J. Chem. Phys. 1(8)(1933)515-548. [48] J.L. Abascal, E. Sanz, R. García Fernández, C. Vega, A potential model for the study of ices and amorphous water:TIP4P/Ice, J. Chem. Phys. 122(23)(2005)234511. [49] S. Calero, D. Dubbeldam, R. Krishna, B. Smit, T.J.H. Vlugt, J.F.M. Denayer, J.A. Martens, T.L.M. Maesen, Understanding the role of sodium during adsorption:A force field for alkanes in sodium-exchanged faujasites, J. Am. Chem. Soc. 126(36)(2004)11377-11386. [50] L.W. Cheng, K. Liao, Z. Li, J.L. Cui, B. Liu, F.G. Li, G.J. Chen, C.Y. Sun, The invalidation mechanism of kinetic hydrate inhibitors under high subcooling conditions, Chem. Eng. Sci. 207(2019)305-316. [51] L.W. Cheng, Z. Li, J.L. Cui, R. Zhu, J. Li, H.B. Qin, B. Liu, G.J. Chen, F.L. Ning, The synergistic effect between imidazole reagents and kinetic hydrate inhibitors, J. Mol. Liq. 376(2023)121466. [52] D.Y. Wu, S.H. Zhang, H.D. Zhang, X.X. Zhang, P.H. Sun, An experimental study on the characteristics of bulk nanobubbles generated by CO2 hydrate dissociation, Fuel 318(2022)123640. [53] M.R. Walsh, C.A. Koh, E.D. Sloan, A.K. Sum, D.T. Wu, Microsecond simulations of spontaneous methane hydrate nucleation and growth, Science 326(5956)(2009)1095-1098. [54] L.C. Jacobson, V. Molinero, Can amorphous nuclei grow crystalline clathrates?The size and crystallinity of critical clathrate nuclei, J. Am. Chem. Soc. 133(16)(2011)6458-6463. [55] R. Ma, H. Zhong, L.W. Li, J. Zhong, Y.G. Yan, J. Zhang, J.X. Liu, Molecular insights into the effect of a solid surface on the stability of a hydrate nucleus, J. Phys. Chem. C 124(4)(2020)2664-2671. [56] J.X. Liu, J. Hou, J.F. Xu, H.Y. Liu, G. Chen, J. Zhang, Formation of clathrate cages of sI methane hydrate revealed by ab initio study, Energy 120(2017)698-704. |