[1] Y.M. Wei, J.N. Kang, L.C. Liu, Q. Li, P.T. Wang, J.J. Hou, Q.M. Liang, H. Liao, S.F. Huang, B.Y. Yu, A proposed global layout of carbon capture and storage in line with a 2 ℃ climate target, Nat. Clim. Change 11 (2021) 112-118. [2] M. Bahmani, J. Shariati, A.N. Rouzbahani, Simulation and optimization of an industrial gas condensate stabilization unit to modify LPG and NGL production with minimizing CO2 emission to the environment, Chin. J. Chem. Eng. 25 (3) (2017) 338-346. [3] P. Muchan, C. Saiwan, J. Narku-Tetteh, R. Idem, T. Supap, P. Tontiwachwuthikul, Screening tests of aqueous alkanolamine solutions based on primary, secondary, and tertiary structure for blended aqueous amine solution selection in post combustion CO2 capture, Chem. Eng. Sci. 170 (2017) 574-582. [4] W. Rickels, F. Meier, M. Quaas, The historical social cost of fossil and industrial CO2 emissions, Nat. Clim. Change 13 (2023) 742-747. [5] K.K. Li, W. Leigh, P. Feron, H. Yu, M. Tade, Systematic study of aqueous monoethanolamine (MEA)-based CO2 capture process: Techno-economic assessment of the MEA process and its improvements, Appl. Energy 165 (2016) 648-659. [6] Y. Yang, W.Q. Xu, Y. Wang, J.R. Shen, Y.X. Wang, Z.B. Geng, Q. Wang, T.Y. Zhu, Progress of CCUS technology in the iron and steel industry and the suggestion of the integrated application schemes for China, Chem. Eng. J. 450 (2022) 138438. [7] M. Sullivan, T. Rodosta, K. Mahajan, D. Damiani, An overview of the Department of Energy’s CarbonSAFE Initiative: Moving CCUS toward commercialization, AIChE. J. 66 (4) (2020) e16855. [8] Z.E. Zhang, T. Wang, M.J. Blunt, E.J. Anthony, A.H A. Park, R.W. Hughes, P.A. Webley, J.Y. Yan, Advances in carbon capture, utilization and storage, Appl. Energy 278 (2020) 115627. [9] K.C. Wei, H.Q. Guan, Q. Luo, J. He, S.H. Sun, Recent advances in CO2 capture and reduction, Nanoscale 14 (33) (2022) 11869-11891. [10] H. Guo, C.X. Li, X.Q. Shi, H. Li, S.F. Shen, Nonaqueous amine-based absorbents for energy efficient CO2 capture, Appl. Energy 239 (2019) 725-734. [11] H.L. Liu, X.T. Jiang, R. Idem, S.L. Dong, P. Tontiwachwuthikul, Comprehensive reaction kinetics model of CO2 absorption into 1-dimethylamino-2-propanol solution, AlChE. J. 68 (11) (2022) e17816. [12] X.W. Zhou, Y. Shen, F. Liu, J.X. Ye, X.Y. Wang, J.K. Zhao, S.H. Zhang, L.D. Wang, S.J. Li, J.M. Chen, A novel dual-stage phase separation process for CO2 absorption into a biphasic solvent with low energy penalty, Environ. Sci. Technol. 55 (22) (2021) 15313-15322. [13] W. Tian, K. Ma, J.Y. Ji, S.Y. Tang, S. Zhong, C.J. Liu, H.R. Yue, B. Liang, Nonaqueous MEA/PEG200 absorbent with high efficiency and low energy consumption for CO2 capture, Ind. Eng. Chem. Res. 60 (10) (2021) 3871-3880. [14] G.P. Hu, K.H. Smith, Y. Wu, K.A. Mumford, S.E. Kentish, G.W. Stevens, Carbon dioxide capture by solvent absorption using amino acids: A review, Chin. J. Chem. Eng. 26 (11) (2018) 2229-2237. [15] S.T. Parker, A. Smith, A.C. Forse, W.C. Liao, F. Brown-Altvater, R.L. Siegelman, E.J. Kim, N.A. Zill, W.J. Zhang, J.B. Neaton, J.A. Reimer, J.R. Long, Evaluation of the stability of diamine-appended Mg2(dobpdc) frameworks to sulfur dioxide, J. Am. Chem. Soc. 144 (43) (2022) 19849-19860. [16] F.M. Wang, Y.J. Zeng, Y.H. Hou, Q. Cai, Q.L. Liu, B.X. Shen, X.Q. Ma, CO2 adsorption on N-doped porous biocarbon synthesized from biomass corncobs in simulated flue gas, Langmuir 39 (22) (2023) 7566-7577. [17] C.F. Liu, S.M. Shih, T. Huang, Effect of SO2 on the reaction of calcium hydroxide with CO2 at low temperatures, Ind. Eng. Chem. Res. 49 (2010) 9052-9057. [18] P. Narayanan, R.P. Lively, C.W. Jones, Effect of SO2 on the CO2 capture performance of self-supported branched poly(ethyleneimine) scaffolds, Energy Fuels 37 (7) (2023) 5257-5269. [19] R. Chen, T.S. Zhang, Y.Q. Guo, J.W. Wang, J.X. Wei, Q.J. Yu, Recent advances in simultaneous removal of SO2 and NOx from exhaust gases: Removal process, mechanism and kinetics, Chem. Eng. J. 420 (2021) 127588. [20] C.R. Yang, Y.X. Xiong, J. Chen, J.S. Jin, J.G. Mi, Amine-functionalized micron-porous polymer foams with high CO2 adsorption efficiency and exceptional stability in PSA process, Chem. Eng. J. 420 (2021) 129555. [21] J.B. Gao, S.J. Wang, B. Zhao, G.J. Qi, C.H. Chen, Pilot-scale experimental study on the CO2 capture process with existing of SO2: Degradation, reaction rate, and mass transfer, Energy Fuels 25 (12) (2011) 5802-5809. [22] R.A. Khatri, S.S.C. Chuang, Y. Soong, M. Gray, Thermal and chemical stability of regenerable solid amine sorbent for CO2 capture, Energy Fuels 20 (4) (2006) 1514-1520. [23] R. Tailor, M. Abboud, A. Sayari, Supported polytertiary amines: Highly efficient and selective SO2 adsorbents, Environ. Sci. Technol. 48 (3) (2014) 2025-2034. [24] D.L. Wang, J.P. Xie, G.X. Li, W.L. Meng, J.W. Li, D.L. Li, H.R. Zhou, Multiobjective evaluation of amine-based absorbents for SO2 capture process using the pKa mathematical model, ACS Omega 7 (3) (2022) 2897-2907. [25] W. Zhang, Y. Li, Y.N. Li, E.H. Gao, G.H. Cao, M.T. Bernards, Y. He, Y. Shi, Enhanced SO2 resistance of tetraethylenepentammonium nitrate protic ionic liquid-functionalized SBA-15 during CO2 capture from flue gas, Energy Fuels 34 (7) (2020) 8628-8634. [26] Y. Meng, T.Y. Ju, S.Y. Han, Y.C. Gao, J.W. Liu, J.G. Jiang, Exploring the stability on exposure to acid impurities of polyethyleneimine-functionalized silica for post-combustion CO2 capture, Chem. Eng. J. 421 (2021) 127754. [27] Y.F. Fan, F. Rezaei, Y. Labreche, R.P. Lively, W.J. Koros, C.W. Jones, Stability of amine-based hollow fiber CO2 adsorbents in the presence of NO and SO2, Fuel 160 (2015) 153-164. [28] J.D. Li, K. Cheng, E. Croiset, W.A. Anderson, Q.H. Li, Z.C. Tan, Effects of SO2 on CO2 capture using chilled ammonia solvent, Int. J. Greenh. Gas Contr. 63 (2017) 442-448. [29] J.B. Gao, S.J. Wang, J. Wang, L.D. Cao, S.W. Tang, Y. Xia, Effect of SO2 on the amine-based CO2 capture solvent and improvement using ion exchange resins, Int. J. Greenh. Gas Contr. 37 (2015) 38-45. [30] R. Zhang, Q. Yang, Z.W. Liang, G. Puxty, R.J. Mulder, J.E. Cosgriff, H. Yu, X. Yang, Y. Xue, Toward efficient CO2 capture solvent design by analyzing the effect of chain lengths and amino types to the absorption capacity, bicarbonate/carbamate, and cyclic capacity, Energy Fuels 31 (10) (2017) 11099-11108. [31] J.L. Zhan, B.B. Wang, L.L. Zhang, B.C. Sun, J.W. Fu, G.W. Chu, H.K. Zou, Simultaneous absorption of H2S and CO2 into the MDEA + PZ aqueous solution in a rotating packed bed, Ind. Eng. Chem. Res. 59 (17) (2020) 8295-8303. [32] T.W. Wu, Y.T. Hung, M.T. Chen, C.S. Tan, CO2 capture from natural gas power plants by aqueous PZ/DETA in rotating packed bed, Sep. Purif. Technol. 186 (2017) 309-317. [33] G. Rochelle, E. Chen, S. Freeman, D. Van Wagener, Q. Xu, A. Voice, Aqueous piperazine as the new standard for CO2 capture technology, Chem. Eng. J. 171 (3) (2011) 725-733. [34] F.Z. Meng, T.Y. Ju, S.Y. Han, L. Lin, J.L. Li, K.L. Chen, J.G. Jiang, Study on biogas upgrading characteristics and reaction mechanism of low energy consumption 2-amino-2-methylpropanol (AMP)/piperazine (PZ)/H2O mixed amines, Sep. Purif. Technol. 310 (2023) 123195. [35] Y.N. Li, J. Cheng, L.Q. Hu, J.Z. Liu, J.H. Zhou, K.F. Cen, Phase-changing solution PZ/DMF for efficient CO2 capture and low corrosiveness to carbon steel, Fuel 216 (2018) 418-426. [36] S. Freeman, G. Rochelle, Thermal degradation of aqueous piperazine for CO2 capture. 1. Effect of process conditions and comparison of thermal stability of CO2 capture amines, Ind. Eng. Chem. Res. 51 (2012) 7719-7725. [37] S.A. Freeman, G.T. Rochelle, Thermal degradation of aqueous piperazine for CO2 capture: 2. Product types and generation rates, Ind. Eng. Chem. Res. 51 (22) (2012) 7726-7735. [38] Q. Yang, G. Puxty, S. James, M. Bown, P. Feron, W. Conway, Toward intelligent CO2 capture solvent design through experimental solvent development and amine synthesis, Energy Fuels 30 (9) (2016) 7503-7510. [39] B.H. Lv, B.S. Guo, Z.M. Zhou, G.H. Jing, Mechanisms of CO2 capture into monoethanolamine solution with different CO2 loading during the absorption/desorption processes, Environ. Sci. Technol. 49 (17) (2015) 10728-10735. [40] J.T. Yeh, K.P. Resnik, K. Rygle, H.W. Pennline, Semi-batch absorption and regeneration studies for CO2 capture by aqueous ammonia, Fuel Process. Technol. 86 (14-15) (2005) 1533-1546. [41] M. Xiao, H.L. Liu, R. Idem, P. Tontiwachwuthikul, Z.W. Liang, A study of structure-activity relationships of commercial tertiary amines for post-combustion CO2 capture, Appl. Energy 184 (2016) 219-229. [42] Y. Wu, J. Qian, Y. Jiang, S.J. Jia, X. Xu, X.Q. Liu, P. Cui, Target-specific modification of diethylenetriamine with hydroxyalkyls: Efficient absorbents for CO2 capture, Sep. Purif. Technol. 335 (2024) 126075. [43] C.N. Yang, T.C. Li, P. Tantikhajorngosol, T. Sema, M. Xiao, P. Tontiwachwuthikul, Evaluation of novel aqueous piperazine-based physical-chemical solutions as biphasic solvents for CO2 capture: Initial absorption rate, equilibrium solubility, phase separation and desorption rate, Chem. Eng. Sci. 277 (2023) 118852. [44] J.B. Roque, Y. Kuroda, L.T. Gottemann, R. Sarpong, Deconstructive diversification of cyclic amines, Nature 564 (7735) (2018) 244-248. [45] S. Zhou, S. Wang, C. Sun, C. Chen, SO2 effect on degradation of MEA and some other amines, Energy Procedia 37 (2013) 896-904. [46] R. Schmidt, J.B. Cross, E.G. Latimer, Tail-gas cleanup by simultaneous SO2 and H2S removal, Energy Fuels 23 (7) (2009) 3612-3616. [47] Y. Beyad, R. Burns, G. Puxty, M. Maeder, The role of SO2 in the chemistry of amine-based CO2 capture in PCC, Energy Procedia 37 (2013) 1262-1266. [48] Q. Wu, C.L. Sun, H.Q. Wang, T. Wang, Y.J. Wang, Z.B. Wu, The role and mechanism of triethanolamine in simultaneous absorption of NOx and SO2 by magnesia slurry combined with ozone gas-phase oxidation, Chem. Eng. J. 341 (2018) 157-163. |