[1] Z.Y. Li, Z. Qi, Z.X. Wang, L.C. Zhang, D. Liang, Q. Dong, Numerical investigation of coke oven gas (COG) injection into an ironmaking blast furnace (BF), Int. J. Hydrogen Energy 47 (73) (2022) 31109-31128. [2] X.B. Yu, Z.J. Hu, Y.S. Shen, Modeling of hydrogen shaft injection in ironmaking blast furnaces, Fuel 302 (2021) 121092. [3] Yingjie Fan, Yifan Chai, Jiayi Wu, Yunhao Zhang, Yici Wang, Shengli An, Guoping Luo, Behavior of coke in the blast furnace for smelting Bayan Obo Mine, Fuel 309 (2022) 122147. [4] Y.R. Liu, Y.S. Shen, Modelling and optimisation of biomass injection in ironmaking blast furnaces, Prog. Energy Combust. Sci. 87 (2021) 100952. [5] Z.Y. Guo, K.X. Jiao, J.L. Zhang, H.B. Ma, S. Meng, Z.Y. Wang, J. Zhang, Y.B. Zong, Graphitization and performance of deadman coke in a large dissected blast furnace, ACS Omega 6 (39) (2021) 25430-25439. [6] Z. Lei, J.C. Yan, R.L. Xie, Z. Yao, C. Xue, Y.J. Tian, P. Cui, Catalysis mechanism of solution loss reaction of metallurgical coke in blast furnace: experimental and modeling study, Fuel 290 (2021) 120025. [7] G.W. Wang, S. Ren, J.L. Zhang, X.J. Ning, W. Liang, N. Zhang, C. Wang, Influence mechanism of alkali metals on CO2 gasification properties of metallurgical coke, Chem. Eng. J. 387 (2020) 124093. [8] H.L. Jiao, M.J. Wang, J. Kong, D. Yan, J. Guo, L.P. Chang, Contribution of single coal property to the changes of structure and reactivity of chars from blending coking, J. Anal. Appl. Pyrolysis 134 (2018) 114-121. [9] Qi Wang, Rui Guo, Xue-fei Zhao, Jia-fu Sun, Song Zhang, Wen-zhuang Liu, A new testing and evaluating method of cokes with greatly varied CRI and CSR, Fuel 182 (2016) 879-885. [10] Y. Saito, C. Tsukamoto, Hot coke strength in CO2 reaction, ISIJ Int. 62 (3) (2022) 606-608. [11] C.Q. Zou, H.M. Yang, X. Xu, M.Y. Zang, S.H. Chen, Computational modeling of impact failure of polymer coatings, Compos. Struct. 291 (2022) 115576. [12] Keliang Pang, Xinyang Meng, Youzhi Zheng, Fujun Liu, Chaoran Wan, Zhiyuan Gu, Minmin Sun, Haotian Wu, Effect of gasification reaction on pore structure, microstructure, and macroscopic properties of blast furnace coke, Fuel 350 (2023) 128694. [13] Li J, Wang Y, Chen Z, Rahman SS, Simulation of adsorption-desorption behavior in coal seam gas reservoirs at the molecular level: a comprehensive review, Energy Fuels 34(3) (2020) 2619-2642. [14] P. Muller, R.D.E. Krosschell, W. Winkenwerder, J. van der Schaaf, The butoxylation of dodecylamine: reaction mechanism and kinetics, Chem. Eng. J. 382 (2020) 122939. [15] Zihua Shao, Jintang Wang, Kaihe Lv, Bo Liao, Zonglun Wang, Yujing Bai, Ren Wang, Jinsheng Sun, Experimental and molecular dynamics studies of zwitterionic inhibitors of methane hydrate dissociation, Fuel 318 (2022) 123059. [16] Guohui Chen, Shuangfang Lu, Junfang Zhang, Qingzhong Xue, Tongcheng Han, Haitao Xue, Shansi Tian, Jinbu Li, Chenxi Xu, Marina Pervukhina, Keys to linking GCMC simulations and shale gas adsorption experiments, Fuel 199 (2017) 14-21. [17] Q.X. Zhang, H. Liao, Y. Hao, Does one path fit all? An empirical study on the relationship between energy consumption and economic development for individual Chinese provinces, Energy 150 (2018) 527-543. [18] H.M. Polat, M. Zeeshan, A. Uzun, S. Keskin, Unlocking CO2 separation performance of ionic liquid/CuBTC composites: combining experiments with molecular simulations, Chem. Eng. J. 373 (2019) 1179-1189. [19] M. Zheng, X.X. Li, J. Liu, Z. Wang, X.M. Gong, L. Guo, W.L. Song, Pyrolysis of Liulin coal simulated by GPU-based ReaxFF MD with cheminformatics analysis, Energy Fuels 28 (1) (2014) 522-534. [20] H. Kwon, Y. Xuan, Pyrolysis of bio-derived dioxolane fuels: a ReaxFF molecular dynamics study, Fuel 306 (2021) 121616. [21] J.P. Mathews, A.C.T. van Duin, A.L. Chaffee, The utility of coal molecular models, Fuel Process. Technol. 92 (4) (2011) 718-728. [22] K. Chenoweth, A. C. T. van Duin, S. Dasgupta, W. A. Goddard Iii, Initiation mechanisms and kinetics of pyrolysis and combustion of JP-10 hydrocarbon jet fuel, J. Phys. Chem. A 113(9) (2009) 1740-1746. [23] Yan Tian, Guang-Yue Li, Hang Zhang, Jie-Ping Wang, Zi-Zhao Ding, Rui Guo, Huan Cheng, Ying-Hua Liang, Molecular basis for coke strength: stacking-fault structure of wrinkled carbon layers, Carbon 162 (2020) 56-65. [24] Xuguang Dai, Chongtao Wei, Meng Wang, Ruying Ma, Yu Song, Junjian Zhang, Xiaoqi Wang, Xuan Shi, Veerle Vandeginste, Interaction mechanism of supercritical CO2 with shales and a new quantitative storage capacity evaluation method, Energy 264 (2023) 126424. [25] A. Ostadhossein, S.Y. Kim, E.D. Cubuk, Y. Qi, A.C. van Duin, Atomic insight into the lithium storage and diffusion mechanism of SiO2/Al2O3 electrodes of lithium ion batteries: ReaxFF reactive force field modeling, J. Phys. Chem. A 120 (13) (2016) 2114-2127. [26] B. He, T. Vo, P. Newell, Investigation of fracture in porous materials: a phase-field fracture study informed by ReaxFF, Eng. Comput. 38 (6) (2022) 5617-5633. [27] Wentao Guo, Qingguo Xue, Yingli Liu, Zhancheng Guo, Xuefeng She, Jingsong Wang, Qingqing Zhao, Xiuwei An, Kinetic analysis of gasification reaction of coke with CO2 or H2O, Int. J. Hydrogen Energy 40(39) (2015) 13306-13313. [28] Y. Elmay, M. Jeguirim, G. Trouve, R. Said, Kinetic analysis of thermal decomposition of date palm residues using Coats-Redfern method, Energy Sources, Part A Recovery, Util. Environ. Eff. 38 (8) (2016) 1117-1124. [29] X.M. You, X.F. She, J.S. Wang, Q.G. Xue, Z.Y. Jiang, Preparation of CaO-containing carbon pellets from coking coal and calcium oxide: effects of temperature, pore distribution and carbon structure on compressive strength in pyrolysis furnace, Int. J. Miner. Metall. Mater. 28 (7) (2021) 1153-1163. [30] D. Zhao, J.L. Zhang, G.W. Wang, A.N. Conejo, R.S. Xu, H.Y. Wang, J.B. Zhong, Structure characteristics and combustibility of carbonaceous materials from blast furnace flue dust, Appl. Therm. Eng. 108 (2016) 1168-1177. [31] Y. Sekine, H. Fujimoto, Evaluation of the structure and strength of coke with HPC binder under various preparation conditions, ISIJ Int. 59 (8) (2019) 1437-1439. [32] Z. Lei, J. Jiang, G.L. Zhu, P. Cui, Q. Ling, Z.G. Zhao, Investigate the adsorption behavior of CO2 on char-inorganic compound model for coal gasification, Energy Fuels (2016) acs.energyfuels.5b02386. [33] K.J. Li, H. Zhang, G.Y. Li, J.L. Zhang, M. Bouhadja, Z.J. Liu, A.A. Skelton, M. Barati, ReaxFF molecular dynamics simulation for the graphitization of amorphous carbon: a parametric study, J. Chem. Theor. Comput. 14 (5) (2018) 2322-2331. [34] Guixiang Li, Fangjuan Zheng, Qingfu Huang, Junjie Wang, Bo Niu, Yayun Zhang, Donghui Long, Molecular insight into pyrolysis processes via reactive force field molecular dynamics: a state-of-the-art review, J. Anal. Appl. Pyrolysis 166 (2022) 105620. [35] A. Karuth, A. Alesadi, A. Vashisth, W.J. Xia, B. Rasulev, Reactive molecular dynamics study of hygrothermal degradation of crosslinked epoxy polymers, ACS Appl. Polym. Mater. 4 (6) (2022) 4411-4423. [36] G. Zhang, J. Li, Z.K. Liu, Multiple objective NSGA-II-based optimization program and its application in reactive force field for 2, 4, 6-trinitrotoluene diffusion in the aqueous phase, J. Phys. Chem. C 123 (32) (2019) 19962-19969. [37] Y. Xiao, J.F. Zeng, J.W. Liu, X. Lu, C.M. Shu, Reactive force field (ReaxFF) molecular dynamics investigation of bituminous coal combustion under oxygen-deficient conditions, Fuel 318 (2022) 123583. [38] M. Zheng, X.X. Li, F.G. Nie, L. Guo, Investigation of overall pyrolysis stages for Liulin bituminous coal by large-scale ReaxFF molecular dynamics, Energy Fuels 31 (4) (2017) 3675-3683. [39] D.K. Hong, L. Liu, C.B. Wang, T. Si, X. Guo, Construction of a coal char model and its combustion and gasification characteristics: molecular dynamic simulations based on ReaxFF, Fuel 300 (2021) 120972. [40] A. Mori, S. Kubo, S. Kudo, K. Norinaga, T. Kanai, H. Aoki, J.I. Hayashi, Preparation of high-strength coke by carbonization of hot-briquetted Victorian brown coal, Energy Fuels 26 (1) (2012) 296-301. [41] Q. Lu, R. Guo, H. Zhang, J.P. Wang, T. Lu, G.Y. Li, Y.H. Liang, To stimulate, and to inhibit: a theoretical understanding of the sodium-catalytic mechanism of coke gasification, Chem. Eng. J. 435 (2022) 135091. [42] Z.N. Song, Q.B. Dong, W.L. Xu, F.L. Zhou, X.H. Liang, M. Yu, Molecular layer deposition-modified 5A zeolite for highly efficient CO2 capture, ACS Appl. Mater. Interfaces 10 (1) (2018) 769-775. [43] P. Hebbeker, P. Linse, S. Schneider, Optimal displacement parameters in Monte Carlo simulations, J. Chem. Theor. Comput. 12 (4) (2016) 1459-1465. [44] L.C. Kroger, W.A. Kopp, M. Dontgen, K. Leonhard, Assessing statistical uncertainties of rare events in reactive molecular dynamics simulations, J. Chem. Theor. Comput. 13 (9) (2017) 3955-3960. [45] M.A.A. Ahamed, M.S.A. Perera, P.G. Ranjith, Implementation of an elastoplastic constitutive model to study the proppant embedment in coal under different pore fluid saturation conditions: a numerical and experimental study, Fuel 317 (2022) 123488. [46] M.M. Islam, A. Ostadhossein, O. Borodin, A.T. Yeates, W.W. Tipton, R.G. Hennig, N. Kumar, A.C. van Duin, ReaxFF molecular dynamics simulations on lithiated sulfur cathode materials, Phys. Chem. Chem. Phys. 17 (5) (2015) 3383-3393. |