[1] E. Ali, Z. Yaakob, In Electrolysis, J. Kleperis Ed., InTech, London, 2012, p. 227. [2] H. M. Guevara, S. Roy, In Wastewater Recycling and Management, S. K. Ghosh Ed., Springer, Singapore, 2019, p. 217. https://doi.org/10.1007/978-981-13-2619-6_17. [3] Y. Zhang, J. Mao, J. Zhao, B. Yang, Z. Zhang, Research on the Reuse Technology of Fracturing Flowback Fluids in Fracking, Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 42(13) (2019) 1674-1680. https://doi.org/10.1080/15567036.2019.1604885. [4] P. K. Cornejo, Q. Zhang, J. R. Mihelcic, How Does Scale of Implementation Impact the Environmental Sustainability of Wastewater Treatment Integrated with Resource Recovery, Environmental Science & Technology, 50 (2016) 6680-6689. https://doi.org/10.1021/acs.est.5b05055. [5] M. Salgot, M. Folch, Wastewater Treatment and Water Reuse, Current Opinion on Environmental Science & Health, 2 (2018) 64-74. https://doi.org/10.1016/j.coesh.2018.03.005. [6] H.M. Akutteh, R. Buamah, S. Wiafe, K.B. Nyarko, Optimizing coagulation-flocculation processes with aluminium coagulation using response surface methods, Applied Water Science 12 (2022) 188. https://doi.org/10.1007/s13201-022-01708-1. [7] H. Lu, Q. Li, W. Feng, Application Progress of O3/UV Advanced Oxidation Technology in the Treatment of Organic Pollutants in Water, Sustainability 14 (2022) 1556. https://doi.org/10.3390/su14031556. [8] C.A. Grande, Modelling of adsorption technologies for controlling indoor air quality, Adsorption 28 (2022) 1-13. https://doi.org/10.1007/s10450-022-00354-y. [9] A. Dutta, S. Basu, S.K. Mukherjee, S.T. Hossain, Wastewater treatment by microbial biofilm: A distinct possibility Microbial Ecology of Wastewater Treatment Plants, 2021, pp. 435-468 https://doi.org/10.1016/B978-0-12-822503-5.00013-8. [10] M. Ebba Bote, Studies on electrode combination for COD removal from domestic wastewater using electrocoagulation, Heliyon 7 (2021) e08614. https://doi.org/10.1016/j.heliyon.2021.e08614. [11] W. Reategui-Romero, L.V. Flores-Del Pino, J.L. Guerrero-Guevara, J. Castro-Torres, L.M. Rea-Marcos, M.E. King-Santos, R. Yuli-Posadas, Benefits of Electrocoagulation in Treatment of Wastewater: Removal of Fe and Mn metals, oil and grease and COD: three case studies, International Journal of Applied Engineering Research ISSN 0973-4562 13(8) (2018) 6450-6462. [12] T. Jovanovic, N. Velinov, M. Petrovic, S. Najdanovic, D. Bojic, M. Radovic, A. Bojic, Mechanism of the electrocoagulation process and its application for treatment of wastewater: A review, Advanced technologies, 10(1) (2021) 63-72. https://doi.org/10.5937/savteh2101063J. [13] A. Kadier, Z. Al-Qodah, G.K. Akkaya, D. Song, J.M. Peralta-Hernandez, J.-Y. Wang, C. Phalakornkule, M. Bajpai, N.M. Niza, V. Gilhotra, M.E. Bote, Q. Ma, C.C. Obi, C.A. Igwegbe. A state-of-the-art review on electrocoagulation (EC): An efficient, emerging, and green technology for oil elimination from oil and gas industrial wastewater streams. Case Studies in Chemical and Environmental Engineering 6 (2022) 100274. https://doi.org/10.1016/j.cscee.2022.100274. [14] M. Mousazadeh, Z. Naghdali, Z. Al-Qodah, S.M. Alizadeh, E.K. Niaragh, S. Malekmohammadi, P.V. Nidheesh, E.P.L. Roberts, M. Sillanpaa, M.M. Emamjomeh. A systematic diagnosis of state of the art in the use of electrocoagulation as a sustainable technology for pollutant treatment: An updated review. Sustainable Energy Technologies and Assessments 47 (2021) 101353. https://doi.org/10.1016/j.seta.2021.101353. [15] K. Ulucan, H.A. Kabuk, F. Ilhan, U. Kurt. Electrocoagulation process application in bilge water treatment using response surface methodology. Int. J. Electrochem. Sci. 9 (2014). [16] Chen X, Ren P, Li T, Trembly JP, Liu X. Zinc removal from model wastewater by electrocoagulation: processing, kinetics and mechanism. Chem Eng J 2018;349: 358-367. https://doi.org/10.1016/j.cej.2018.05.099. [17] K. Padmaja, J. Cherukuri, M.A. Reddy, A comparative study of the efficiency of chemical coagulation and electrocoagulation methods in the treatment of pharmaceutical effluent, Journal of Water Process Engineering 34 (2020) 101153. https://doi.org/10.1016/j.jwpe.2020.101153. [18] N. Acharya, G. Jyoti, C. Thakur, P.K. Chaudhari, Treatment of domestic sewage using electrocoagulation followed by ion exchange-parametric and kinetic studies, Desalination and Water Treatment, 178 (2020) 65-73. https://doi.org/10.5004/dwt.2020.24951. [19] R.M. Bande, B. Prasad, I.M. Mishra, K.L. Wasewar, Oil field effluent water treatment for safe disposal by electroflotation, Chem. Eng. J. 137 (3) (2008) 503-509, https://doi.org/10.1016/j.cej.2007.05.003. [20] C. Phalakornkule, J. Mangmeemak, K. Intrachod, B. Nuntakumjorn, Pretreatment of palm oil mill effluent by electrocoagulation and coagulation, Sci. Asia 36 (2) (2010) 142-149, https://doi.org/10.2306/scienceasia1513-1874.2010.36.142. [21] Majlesi M, Mohseny SM, Sardar M, Golmohammadi S, Sheikhmohammadi A. Improvement of aqueous nitrate removal by using continuous electrocoagulation/electroflotation unit with vertical monopolar electrodes. Sustainable Environ Res 2016;26:287-290. https://doi.org/10.1016/j.serj.2016.09.002. [22] S. Song, J. Yao, Z. He, J. Qiu, J. Chen. Effect of operational parameters on the decolorization of C.I. Reactive blue 19 in aqueous solution by ozone enhanced electrocoagulation. J. Hazard. Mater.152(1) (2008) 204-210 https://doi.org/10.1016/j.jhazmat.2007.06.104. [23] J. Hassoune; S. Tahiri; A. Aarfane; M. El Krati; A. Salhi; and M. Azzi, Removal of Hydrolyzable and Condensed Tannins from Aqueous Solutions by Electrocoagulation Process, J. Environ. Eng.143(6) (2017) 04017010 https://doi.org/10.1061/(ASCE)EE.1943-7870.0001196. [24] N. Daneshvar, A. Oladegaragoze, N. Djafarzadeh. Decolorization of basic dye solutions by electrocoagulation: an investigation of the effect of operational parameters. J. Hazard. Mater. 129 (1-3) (2006) 116-122. https://doi.org/10.1016/j.jhazmat.2005.08.033. [25] W. Reategui-Romero, S.E. Morales-Quevedo, K.W. Huanca-Colos, N.M. Figueroa-Gomez, M. E. King-Santos, W.F. Zaldivar-Alvarez, L.V. Flores-Del Pino, R.A. Yuli-Posadas, W. Bulege-Gutierrez, Effect of current density on COD removal efficiency for wastewater using the electrocoagulation process, Desalination and Water Treatment 184 (2020) 15-29. https://doi.org/10.5004/dwt.2020.25341. [26] J.T. Nwabanne and C.C Obi, Abattoir Wastewater Treatment by Electrocoagulation Using Iron Electrodes, Der Chemica Sinica, 8(2) (2017) 254-260. [27] A.A. Moneer, W.M. Thabet, M. Khedawy, M.M. El Sadaawy, N.A. Shaaban, Electrocoagulation process for oily wastewater treatment and optimization using response surface methodology, International Journal of Environmental Science and Technology, 20 (2023)13859-13872, https://doi.org/10.1007/s13762-023-05003-7. [28] M. Ebba, P. Asaithambi, E. Alemayehu, Development of electrocoagulation process for wastewater treatment: optimization by response surface methodology, Heliyon 8 (2022) e09383. https://doi.org/10.1016/j.heliyon.2022.e09383. [29] Y.D. Sagsoz, A E. Yilmaz, F. Ekmekyapar Torun, B. Kocadagistan, S. Kul. The Investigation of COD Treatment and Energy Consumption of Urban Wastewater by a Continuous Electrocoagulation System. J. Electrochem. Sci. Technol., 2022, 13(2), 261-268. https://doi.org/10.33961/jecst.2021.00647. [30] S. Manikandan, R. Saraswathi, Electrocoagulation technique for removing organic and inorganic pollutants (COD) from the various industrial effluents: an overview, Environ. Eng. Res. 28 (4) 220231. [31] M. Asselin, P. Drogui, H. Benmoussa, J.F. Blais, Effectiveness of electrocoagulation process in removing organic compounds from slaughterhouse wastewater using monopolar and bipolar electrolytic cells, Journals & Books, Volume 72, Issue 11, August 2008, Pages 1727-1733. https://doi.org/10.1016/j.chemosphere.2008.04.067. [32] K. Hashim, W. Ismail Saad, K. Safaa, A. Al-Janabi, Effects of organic matter on the performance of water and wastewater treatment: Electrocoagulation a case study, Materials Science and Engineering, 1184 (2021) 012018. https://doi.org/10.1088/1757-899X/1184/1/012018. [33] A.K. Zanki1, F.H. Mohammad, K.S. Hashim, M. Muradov, P. Kot, M.M. Kareem, B. Abdulhadi, Removal of organic matter from water using ultrasonicassisted electrocoagulation method Materials Science and Engineering 888 (2020) 012033. https://doi.org/10.1088/1757-899X/888/1/012033. [34] W. Den, C.J. Wang, Removal of silica from brackish water by electrocoagulation pretreatment to prevent fouling of reverse osmosis membranes. Sep. Purif. Technol. 59 (2008) 318-325. https://doi.org/10.1016/j.seppur.2007.07.025. [35] P. Qi, R. Luo, T. Pichler, J. Zeng, Y. Wang, Y. Fan, K.J. Sui, Development of a magnetic core-shell Fe3O4@TA@UiO-66 microspherefor removal of arsenic(III) and antimony(III) from aqueous solution. Hazard. Mater. 378 (2019) 120721. https://doi.org/10.1016/j.jhazmat.2019.05.114. [36] E.S. El-Ashtoukhy, N. Amin, Y. Fouad, H. Hamad, Intensification of a new electrocoagulation system characterized byminimum energy consumption and maximum removal efficiency of heavy metals from simulated wastewater. Chem. Eng. Process.Process. Intensif. 154 (2020)108026. https://doi.org/10.1016/j.cep.2020.108026. [37] J-B.Jorcin, spectroscopie d’impedance electrochimique locale: caracterisation de la delamination des peintures et de la corrosion des alliages Al-Cu, these, Univ-Toulouse, 2007. [38] S. Larfaillou, Application de la spectroscopie d’impedance electrochimique a la caracterisation et au diagnostic de microbatteries tout solide, these, Univ Paris-Saclay, 2015. [39] A. Elmelouky, A. Mortadi, El Chahid, R. Elmoznine, Impedance spectroscopy as a tool to evaluate and monitoring the adsorption and removal of nitrate ions from aqueous solution using zinc aluminum chloride anionic clay, Heliyon 4 (2018) e00536. https://doi.org/10.1016/j.heliyon.2018.e00536. [40] M.Y.A. Mollah, P. Morkovsky, J.A. Gomes, M. Kesmez, J. Parga, J. Cocke, Fundamentals, present and future perspectives of electrocoagulation, Journal of Hazardous Materials, 114 (2004) 522-530. https://doi.org/10.1016/j.jhazmat.2004.08.009. [41] A. Tarasov, K. Titov, on the use of the Cole-Cole equations in spectral induced polarization-Geophys, J. Intell. 195 (2013) 352-356, https://doi.org/10.1093/gji/ggt251. [42] M. Mechelhoff, G.H. Kelsall, N.J.D. Graham, Electrochemical behavior of aluminum in electrocoagulation processes, Chemical Engineering Science, 95 (2013) 301-312 https://doi.org/10.1016/j.ces.2013.03.010. [43] P. Maha Lakshmi, P. Sivashanmugam, Treatment of oil tanning effluent by electrocoagulation: influence of ultrasound and hybrid electrode on COD removal, Separ. Purif. Technol. 116 (2013) 378-384, https://doi.org/10.1016/j.seppur.2013.05.026. [44] T. Emerick, J.L. Vieira, M.H.L. Silveira, J.J. Joao, Ultrasound-assisted electrocoagulation process applied to the treatment and reuse of swine slaughterhouse wastewater, J. Environ. Chem. Eng. 8 (6) (2020), 104308. https://doi.org/10.1016/j.jece.2020.104308. [45] R. Elkacmi, O. Boudouch, A. Hasib, M. Bouzaid, M. Bennajah, Photovoltaic electrocoagulation treatment of olive mill wastewater using an external-loop airlift reactor, Sustain. Chem. Pharm. 17 (2020), 100274, https://doi.org/10.1016/j.scp.2020.100274. [46] F. Yan, L. An, X. Xu, W. Du, R. Dai, A review of antibiotics in surface water and their removal by advanced electrocoagulation technologies, Science of the Total Environment 906 (2024) 167737. https://doi.org/10.1016/j.scitotenv.2023.167737. |