[1] D. Lefebvre, F.H. Tezel, A review of energy storage technologies with a focus on adsorption thermal energy storage processes for heating applications, Renew. Sustain. Energy Rev. 67 (2017) 116-125. [2] Y. Ahmadi, K.H. Kim, S. Kim, M. Tabatabaei, Recent advances in polyurethanes as efficient media for thermal energy storage, Energy Storage Mater. 30 (2020) 74-86. [3] C.N. Zou, F. Ma, S.Q. Pan, Q. Zhao, G.Y. Fu, G.S. Zhang, Y.C. Yang, H. Yu, Y.B. Liang, M.J. Lin, Y. Wang, B. Xiong, H.L. Liu, Global energy transition revolution and the connotation and pathway of the green and intelligent energy system, Petrol. Explor. Dev. 50 (3) (2023) 722-740. [4] A. Hussain, S.M. Arif, M. Aslam, Emerging renewable and sustainable energy technologies: State of the art, Renew. Sustain. Energy Rev. 71 (2017) 12-28. [5] M. Waterson, The characteristics of electricity storage, renewables and markets, Energy Policy 104 (2017) 466-473. [6] X.B. Huang, X. Chen, A. Li, D. Atinafu, H.Y. Gao, W.J. Dong, G. Wang, Shape-stabilized phase change materials based on porous supports for thermal energy storage applications, Chem. Eng. J. 356 (2019) 641-661. [7] K. Pielichowska, K. Pielichowski, Phase change materials for thermal energy storage, Prog. Mater. Sci. 65 (2014) 67-123. [8] H.Q. Liu, K.Y. Sun, X.Y. Shi, H.N. Yang, H.S. Dong, Y. Kou, P. Das, Z.S. Wu, Q. Shi, Two-dimensional materials and their derivatives for high performance phase change materials: Emerging trends and challenges, Energy Storage Mater. 42 (2021) 845-870. [9] S. Gong, X.L. Li, M.J. Sheng, S. Liu, Y.F. Zheng, H. Wu, X. Lu, J.P. Qu, High thermal conductivity and mechanical strength phase change composite with double supporting skeletons for industrial waste heat recovery, ACS Appl. Mater. Interfaces 13 (39) (2021) 47174-47184. [10] J. Luo, D.Q. Zou, Y.S. Wang, S. Wang, L. Huang, Battery thermal management systems (BTMs) based on phase change material (PCM): A comprehensive review, Chem. Eng. J. 430 (2022) 132741. [11] M.F. Junaid, Z.U. Rehman, N. Ijaz, M. Cekon, J. Curpek, A. Babeker Elhag, Biobased phase change materials from a perspective of recycling, resources conservation and green buildings, Energy Build. 270 (2022) 112280. [12] R. Kalbasi, Usefulness of PCM in building applications focusing on envelope heat exchange-Energy saving considering two scenarios, Sustain. Energy Technol. Assess. 50 (2022) 101848. [13] D.L. Feng, Y.Y. Zang, P. Li, Y.H. Feng, Y.Y. Yan, X.X. Zhang, Polyethylene glycol phase change material embedded in a hierarchical porous carbon with superior thermal storage capacity and excellent stability, Compos. Sci. Technol. 210 (2021) 108832. [14] Y.L. Li, T. Zou, J. Zhao, T. Zhang, P.Y. Deng, W.W. Liu, X.G. Zhang, C.J. Xie, High-enthalpy aramid nanofiber aerogel-based composite phase change materials with enhanced thermal conductivity, Compos. Commun. 40 (2023) 101614. [15] A. Mostafavi, M. Parhizi, A. Jain, Theoretical modeling and optimization of fin-based enhancement of heat transfer into a phase change material, Int. J. Heat Mass Transf. 145 (2019) 118698. [16] R.I. Rabady, D.S. Malkawi, Thermal conductivity enhancement of sodium thiosulfate pentahydrate by adding carbon nano-tubes/graphite nano-particles, J. Energy Storage 27 (2020) 101166. [17] Y.N. Liu, N.N. Wang, Y.F. Ding, Preparation and properties of composite phase change material based on solar heat storage system, J. Energy Storage 40 (2021) 102805. [18] O. Ola, Y. Chen, Y.Q. Zhu, Three-dimensional carbon foam nanocomposites for thermal energy storage, Sol. Energy Mater. Sol. Cells 191 (2019) 297-305. [19] R.L. Wen, S.B. Zhu, M.M. Wu, W.X. Chen, Design and preparation of Ag modified expanded graphite based composite phase change materials with enhanced thermal conductivity and light-to-thermal properties, J. Energy Storage 41 (2021) 102936. [20] I. Daou, L. El-Kaddadi, O. Zegaoui, M. Asbik, N. Zari, Structural, morphological and thermal properties of novel hybrid-microencapsulated phase change materials based on Fe2O3, ZnO and TiO2 nanoparticles for latent heat thermal energy storage applications, J. Energy Storage 17 (2018) 84-92. [21] J.H. Zhou, G.H. Du, J.F. Hu, X. Lai, S. Liu, Z.G. Zhang, The establishment of Boron nitride@sodium alginate foam/polyethyleneglycol composite phase change materials with high thermal conductivity, shape stability, and reusability, Chin. J. Chem. Eng. 54 (2023) 11-21. [22] H. Mhiri, A. Jemni, H. Sammouda, Numerical and experimental investigations of melting process of composite material (nanoPCM/carbon foam) used for thermal energy storage, J. Energy Storage 29 (2020) 101167. [23] M.Y. Chen, S.Y. Zhang, L.Y. Zhao, J.W. Weng, D.X. Ouyang, Q.P. Chen, Q.H. Kong, J. Wang, Preparation of thermally conductive composite phase change materials and its application in lithium-ion batteries thermal management, J. Energy Storage 52 (2022) 104857. [24] K.O. Mohaisen, M. Hasan Zahir, M. Maslehuddin, S.U. Al-Dulaijan, Development of a shape-stabilized phase change material utilizing natural and industrial byproducts for thermal energy storage in buildings, J. Energy Storage 50 (2022) 104205. [25] C. Baylis, C.A. Cruickshank, Review of bio-based phase change materials as passive thermal storage in buildings, Renew. Sustain. Energy Rev. 186 (2023) 113690. [26] R.K. Mishra, K. Verma, V. Mishra, B. Chaudhary, A review on carbon-based phase change materials for thermal energy storage, J. Energy Storage 50 (2022) 104166. [27] X.H. Chen, K.E. Gonsalves, Synthesis and properties of an aluminum nitride/polyimide nanocomposite prepared by a nonaqueous suspension process, J. Mater. Res. 12 (5) (1997) 1274-1286. [28] J. Jeon, J.H. Park, S. Wi, S. Yang, Y.S. Ok, S. Kim, Latent heat storage biocomposites of phase change material-biochar as feasible eco-friendly building materials, Environ. Res. 172 (2019) 637-648. [29] J. Yang, E.W. Zhang, X.F. Li, Y.T. Zhang, J. Qu, Z.Z. Yu, Cellulose/graphene aerogel supported phase change composites with high thermal conductivity and good shape stability for thermal energy storage, Carbon 98 (2016) 50-57. [30] D.G. Atinafu, B.Y. Yun, S. Wi, Y. Kang, S. Kim, A comparative analysis of biochar, activated carbon, expanded graphite, and multi-walled carbon nanotubes with respect to PCM loading and energy-storage capacities, Environ. Res. 195 (2021) 110853. [31] A.R. Muchtar, C.L. Hassam, B. Srinivasan, D. Berthebaud, T. Mori, N. Soelami, B. Yuliarto, Shape-stabilized phase change materials: Performance of simple physical blending synthesis and the potential of coconut based materials, J. Energy Storage 52 (2022) 104974. [32] B.E. Jebasingh, Exfoliation of graphite by solar irradiation and investigate their thermal property on capric-myristic-palmitic acid/exfoliated graphite composite as phase change material (PCM) for energy storage, J. Energy Storage 5 (2016) 70-76. [33] T. Zhang, T.D. Zhang, J. Zhang, D.Y. Zhang, P.R. Guo, H.X. Li, C.L. Li, Y. Wang, Design of stearic acid/graphene oxide-attapulgite aerogel shape-stabilized phase change materials with excellent thermophysical properties, Renew. Energy 165 (2021) 504-513. [34] L. Safira, N. Putra, T. Trisnadewi, E. Kusrini, T.M.I. Mahlia, Thermal properties of sonicated graphene in coconut oil as a phase change material for energy storage in building applications, Int. J. Low Carbon Technol. 15 (4) (2020) 629-636. [35] Y. Wang, J.F. Hu, Z.M. Zhu, G.H. Du, X. Lai, Z.G. Zhang, Assembling and characterizing of high-loading and steady-shape graphene aerogel composite phase change material with nano-AlN─as an efficient thermal conductivity enhancer, Sol. Energy Mater. Sol. Cells 249 (2023) 112041. [36] A. Ohayon-Lavi, A. Lavi, A. Alatawna, E. Ruse, G. Ziskind, O. Regev, Graphite-based shape-stabilized composites for phase change material applications, Renew. Energy 167 (2021) 580-590. [37] D.J. Wu, X.B. Gu, Q. Sun, W.M. Luo, B.B. Zhang, J.G. Peng, L. Bian, K.J. Dong, Thermal conductivity enhancement of diatomite-based composite phase change materials by interfacial reduction deposition of Cu nanoparticles, J. Energy Storage 61 (2023) 106861. [38] S. Wi, J. Seo, S.G. Jeong, S.J. Chang, Y.J. Kang, S. Kim, Thermal properties of shape-stabilized phase change materials using fatty acid ester and exfoliated graphite nanoplatelets for saving energy in buildings, Sol. Energy Mater. Sol. Cells 143 (2015) 168-173. [39] T.Y. Wang, S.F. Wang, R.L. Luo, C.Y. Zhu, T. Akiyama, Z.G. Zhang, Microencapsulation of phase change materials with binary cores and calcium carbonate shell for thermal energy storage, Appl. Energy 171 (2016) 113-119. [40] Y. Qian, P. Wei, P.K. Jiang, Z. Li, Y.G. Yan, J.P. Liu, Preparation of a novel PEG composite with halogen-free flame retardant supporting matrix for thermal energy storage application, Appl. Energy 106 (2013) 321-327. |