[1] M. Pilmane, K. Salma-Ancane, D. Loca, J. Locs, L. Berzina-Cimdina, Strontium and strontium ranelate: historical review of some of their functions, Mater. Sci. Eng. C, 78(2017)1222-1230. [2] E. Thostenson, T.-W. Chou, Microwave processing: fundamentals and applications, Compos. Appl. Sci. Manuf., 30(9) (1999)1055-1071. [3] D. Zhi, T. Li, J. Li, H. Ren, F. Meng, A review of three-dimensional graphene-based aerogels: synthesis, structure and application for microwave absorption, Compos. B Eng., 211(2021)108642. [4] B. Wang, Q. Wu, Y. Fu, T. Liu, A review on carbon/magnetic metal composites for microwave absorption, J. Mater. Sci. Technol., 86(2021)91-109. [5] P.R. Gogate, Intensification of chemical processing applications using ultrasonic and microwave irradiations, Curr. Opin. Chem. Eng., 17(2017)9-14. [6] H. Li, Z. Zhao, C. Xiouras, G.D. Stefanidis, X. Li, X. Gao, Fundamentals and applications of microwave heating to chemicals separation processes, Renew. Sust. Energ. Rev., 114(2019)109316. [7] M. Oghbaei, O. Mirzaee, Microwave versus conventional sintering: a review of fundamentals, advantages and applications, J. Alloys Compd., 494(1-2) (2010)175-189. [8] D. El Khaled, N. Novas, J. Gazquez, F. Manzano-Agugliaro, Microwave dielectric heating: applications on metals processing, Renew. Sust. Energ. Rev., 82(2018)2880-2892. [9] D. Grekov, P. Pre, B.J. Alappat, Microwave mode of heating in the preparation of porous carbon materials for adsorption and energy storage applications-an overview, Renew. Sust. Energ. Rev., 124(2020)109743. [10] Q. Guo, D.-W. Sun, J.-H. Cheng, Z. Han, Microwave processing techniques and their recent applications in the food industry, Trends Food Sci. Technol., 67(2017)236-247. [11] S. Chandrasekaran, S. Ramanathan, T. Basak, Microwave food processing-a review, Food Res. Int., 52(1) (2013)243-261. [12] J. Sun, W. Wang, Q. Yue, C. Ma, J. Zhang, X. Zhao, Z. Song, Review on microwave-metal discharges and their applications in energy and industrial processes, Appl. Energy, 175(2016)141-157. [13] P.P. Falciglia, P. Roccaro, L. Bonanno, G. De Guidi, F.G. Vagliasindi, S. Romano, A review on the microwave heating as a sustainable technique for environmental remediation/detoxification applications, Renew. Sust. Energ. Rev., 95(2018)147-170. [14] P.K. Loharkar, A. Ingle, S. Jhavar, Parametric review of microwave-based materials processing and its applications, J. Mater. Res. Technol-JMRT, 8(3) (2019)3306-3326. [15] W. Wei, Z. Shao, Y. Zhang, R. Qiao, J. Gao, Fundamentals and applications of microwave energy in rock and concrete processing-A review, Appl. Therm. Eng., 157(2019)113751. [16] A. Kumar, Y. Kuang, Z. Liang, X. Sun, Microwave chemistry, recent advancements, and eco-friendly microwave-assisted synthesis of nanoarchitectures and their applications: a review, Mater. Today Nano, 11(2020)100076. [17] Y. Liu, J. Zhang, X. Yang, W. Yang, Y. Chen, C. Wang, Efficient recovery of valuable metals from waste printed circuit boards by microwave pyrolysis, Chin. J. Chem. Eng., 40(2021)262-268. [18] S. Wang, X. Pei, Y. Luo, G. Chu, H. Zou, B. Sun, Preparation of lithium carbonate by microwave assisted pyrolysis, Chin. J. Chem. Eng., 52(2022)146-153. [19] P.R. More, S.S. Arya, Intensification of bio-actives extraction from pomegranate peel via microwave irradiation: effect of factors, optimization, kinetics, and bioactive profiling, Chem. Eng. Process, (2024)109839. [20] J. Sun, H. Shang, C. Miao, J. Yang, Y. Liao, Microwave enhanced hydrogen production from liquid organic hydrogen carriers: a review, Chem. Eng. Process, (2023)109432. [21] W. Wang, F. Wang, F. Lu, Microwave alkaline roasting-water dissolving process for germanium extraction from zinc oxide dust and its analysis by response surface methodology (RSM), Metall. Res. Technol., 115(2) (2018)203. [22] M. Vartanyan, I. Voytovich, I. Gorbunova, N. Makarov, Preparation and structural characterization of complex oxide eutectic precursors from polymer-salt xerogels obtained by microwave-assisted drying, Materials, 13(8) (2020)1808. [23] J. Du, L. Gao, Y. Yang, S. Guo, J. Chen, M. Omran, G. Chen, Modeling and kinetics study of microwave heat drying of low grade manganese ore, Adv. Powder Technol., 31(7) (2020)2901-2911. [24] A. Mousakhani-Ganjeh, A. Amiri, F. Nasrollahzadeh, A. Wiktor, A. Nilghaz, A. Pratap-Singh, A.M. Khaneghah, Electro-based technologies in food drying-A comprehensive review, Lwt, 145(2021)111315. [25] M. Bouraoui, P. Richard, J. Fichtali, A review of moisture content determination in foods using microwave oven drying, Food Res. Int., 26(1) (1993)49-57. [26] G. Behera, P.P. Sutar, Starch gelatinization and drying of paddy using microwave rotary drum dryer: optimization, kinetics, and cooking studies, Dry. Technol., 39(7) (2021)965-981. [27] A. Canale, G. Benelli, A. Castagna, C. Sgherri, P. Poli, A. Serra, M. Mele, A. Ranieri, F. Signorini, M. Bientinesi, Microwave-assisted drying for the conservation of honeybee pollen, Materials, 9(5) (2016)363. [28] Z. Loh, C. Liew, C. Lee, P. Heng, Microwave-assisted drying of pharmaceutical granules and its impact on drug stability, Int. J. Pharm., 359(1-2) (2008)53-62. [29] M. Al-Ali, K.I. Salih, A. Alsamarrae, Microwave heating temperatures and pharmaceutical powder characteristics, Mater. Today: Proc., 20(2020)583-587. [30] E. Kocbek, H.A. Garcia, C.M. Hooijmans, I. Mijatovic, B. Lah, D. Brdjanovic, Microwave treatment of municipal sewage sludge: evaluation of the drying performance and energy demand of a pilot-scale microwave drying system, Sci. Total Environ., 742(2020)140541. [31] J. Guo, L. Zheng, Z. Li, Microwave drying behavior, energy consumption, and mathematical modeling of sewage sludge in a novel pilot-scale microwave drying system, Sci. Total Environ., 777(2021)146109. [32] W. Xu, M.N. Islam, X. Cao, J. Tian, G. Zhu, Effect of relative humidity on drying characteristics of microwave assisted hot air drying and qualities of dried finger citron slices, Lwt, 137(2021)110413. [33] N. Sujinda, J. Varith, R. Shamsudin, S. Jaturonglumlert, S. Chamnan, Development of a closed-loop control system for microwave freeze-drying of carrot slices using a dynamic microwave logic control, J. Food Eng., 302(2021)110559. [34] W. Liu, M. Zhang, B. Bhandari, D. Yu, A novel combination of LF-NMR and NIR to intelligent control in pulse-spouted microwave freeze drying of blueberry, Lwt, 137(2021)110455. [35] J. Li, Z. Li, L. Li, C. Song, G. Raghavan, F. He, Microwave drying of balsam pear with online aroma detection and control, J. Food Eng., 288(2021)110139. [36] H. Zhang, M. Chen, B. Fu, Q. Li, Evaluation on microwave drying of waste paper towel with multi-magnetron and mode stirrer, Dry. Technol., 39(7) (2021)882-895. [37] A. Wiktor, O. Parniakov, S. Toepfl, D. Witrowa-Rajchert, V. Heinz, S. Smetana, Sustainability and bioactive compound preservation in microwave and pulsed electric fields technology assisted drying, Innovat. Food Sci. Emerg. Technol., 67(2021)102597. [38] L. Shen, M. Gao, Y. Zhu, C. Liu, L. Wang, M. Kamruzzaman, C. Liu, X. Zheng, Microwave drying of germinated brown rice: correlation of drying characteristics with the final quality, Innovat. Food Sci. Emerg. Technol., 70(2021)102673. [39] M. Al-Ali, R. Parthasarathy, Influence of microwave drying and conventional drying methods on the mechanical properties of naproxen sodium drug tablets, Particuology, 53(2020)30-40. [40] M. Al-Ali, R. Parthasarathy, Modeling and kinetics study of novel microwave irradiation drying of naproxen sodium drug, Powder Technol., 345(2019)766-774. |