[1] H.T. Bi, N. Ellis, I.A. Abba, J.R. Grace, A state-of-the-art review of gas-solid turbulent fluidization, Chem. Eng. Sci. 55 (21) (2000) 4789-4825. [2] J.R. Grace, Reflections on turbulent fluidization and dense suspension upflow, Powder Technol. 113 (3) (2000) 242-248. [3] J. Chang, Z.J. Wu, X. Wang, W.Y. Liu, Two- and three-dimensional hydrodynamic modeling of a pseudo-2D turbulent fluidized bed with Geldart B particle, Powder Technol. 351 (2019) 159-168. [4] D. Gidaspow, Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions, Academic Press, New York, 1994. [5] S. Yuu, H. Nishikawa, T. Umekage, Numerical simulation of air and particle motions in group-B particle turbulent fluidized bed, Powder Technol. 118 (1-2) (2001) 32-44. [6] J.W. Wang, Flow structures inside a large-scale turbulent fluidized bed of FCC particles: Eulerian simulation with an EMMS-based sub-grid scale model, Particuology 8 (2) (2010) 176-185. [7] S. Benzarti, H. Mhiri, H. Bournot, R. Occelli, Numerical simulation of turbulent fluidized bed with Geldart B particles, Adv. Powder Technol. 25 (6) (2014) 1737-1747. [8] A. Ullah, K. Hong, S. Chilton, W. Nimmo, Bubble-based EMMS mixture model applied to turbulent fluidization, Powder Technol. 281 (2015) 129-137. [9] Y. Zheng, X.T. Wan, Z. Qian, F. Wei, Y. Jin, Numerical simulation of the gas-particle turbulent flow in riser reactor based on k-ε-kp-εp-Θ two-fluid model, Chem. Eng. Sci. 56 (24) (2001) 6813-6822. [10] W.B. Li, K. Yu, B.T. Liu, X.G. Yuan, Computational fluid dynamics simulation of hydrodynamics and chemical reaction in a CFB downer, Powder Technol. 269 (2015) 425-436. [11] W.B. Li, Y.W. Zhang, Y.Y. Shao, J. Zhu, A rigorous model for the simulation of chemical reaction in gas-particle bubbling fluidized bed: I. Modeling and validation, Powder Technol. 327 (2018) 399-407. [12] H.L. Ren, H.D. Zhang, W.B. Li, Z.L. Tang, D.H. Zhang, Simulation of CO2 capture process in gas-solid bubbling fluidized bed by computational mass transfer, J. Environ. Chem. Eng. 10 (5) (2022) 108548. [13] H.L. Ren, W.B. Li, L. Zeng, K.L. Liu, Z.L. Tang, D.H. Zhang, Numerical study on hydrodynamics of gas-solids circulating fluidized bed with L-valve, Particuology 77 (2023) 37-46. [14] H.L. Ren, L. Zeng, W.B. Li, Z.L. Tang, D.H. Zhang, Numerical study on the hydrodynamics of a chemical looping combustion system with a binary-particle mixture, Ind. Eng. Chem. Res. 62 (38) (2023) 15675-15686. [15] S. Ergun, Fluid flow through packed columns, Chem. Eng. Prog. 48 (1952) 89-94. [16] C.Y. Wen, Y.H. Yu, Mechanics of fluidization, Chem. Eng. Prog. Symp. Ser. 62 (1966) 100-111. [17] S. Zimmermann, F. Taghipour, CFD modeling of the hydrodynamics and reaction kinetics of FCC fluidized-bed reactors, Ind. Eng. Chem. Res. 44 (26) (2005) 9818-9827. [18] D.Z. Zhang, W.B. VanderHeyden, The effects of mesoscale structures on the macroscopic momentum equations for two-phase flows, Int. J. Multiph. Flow 28 (5) (2002) 805-822. [19] J.W. Wang, W. Ge, J.H. Li, Eulerian simulation of heterogeneous gas-solid flows in CFB risers: EMMS-based sub-grid scale model with a revised cluster description, Chem. Eng. Sci. 63 (6) (2008) 1553-1571. [20] K. Hong, Z.S. Shi, W. Wang, J.H. Li, A structure-dependent multi-fluid model (SFM) for heterogeneous gas-solid flow, Chem. Eng. Sci. 99 (2013) 191-202. [21] S. Wang, H.L. Lu, G.D. Liu, Z.H. Sheng, P.F. Xu, D. Gidaspow, Modeling of cluster structure-dependent drag with Eulerian approach for circulating fluidized beds, Powder Technol. 208 (1) (2011) 98-110. [22] W.M. Liu, H.Z. Li, Q.S. Zhu, Q.H. Zhu, A new structural parameters model based on drag coefficient for simulation of circulating fluidized beds, Powder Technol. 286 (2015) 516-526. [23] L.M. Armstrong, S. Gu, K.H. Luo, P. Mahanta, Multifluid modeling of the desulfurization process within a bubbling fluidized bed coal gasifier, AIChE J. 59 (6) (2013) 1952-1963. [24] V. Silva, E. Monteiro, N. Couto, P. Brito, A. Rouboa, Analysis of syngas quality from Portuguese biomasses: An experimental and numerical study, Energy Fuels 28 (9) (2014) 5766-5777. [25] J. Xie, W.Q. Zhong, B.S. Jin, Y.J. Shao, H. Liu, Simulation on gasification of forestry residues in fluidized beds by Eulerian-Lagrangian approach, Bioresour. Technol. 121 (2012) 36-46. [26] J.H. Chen, G.B. Yu, B. Dai, D. Liu, L. Zhao, CFD simulation of a bubbling fluidized bed gasifier using a bubble-based drag model, Energy Fuels 28 (10) (2014) 6351-6360. [27] J. Chang, K. Zhang, Y.P. Yang, B.D. Wang, Q. Sun, Computational investigation of solid sorbent carbon dioxide capture in a fluidized bed reactor, Powder Technol. 275 (2015) 94-104. [28] J.S. Liu, J. Zhu, Experimental study on reactor performance of gas-solids low-velocity fluidized beds, Particuology 66 (2022) 21-28. [29] B.T. Liu, Study of a new mass transfer model of CFD and its application on distillation tray, Ph.D. Thesis, Tianjin University, China, 2003. (in Chinese). [30] Y.S. Zhang, Turbulence, National Defense Industry Press, Beijing, 2002. (in Chinese). [31] P.C. Johnson, R. Jackson, Frictional-collisional constitutive relations for granular materials, with application to plane shearing, J. Fluid Mech. 176 (1987) 67. [32] C.K.K. Lun, S.B. Savage, D.J. Jeffrey, N. Chepurniy, Kinetic theories for granular flow: Inelastic particles in Couette flow and slightly inelastic particles in a general flowfield, J. Fluid Mech. 140 (1984) 223-256. [33] D.G. Schaeffer, Instability in the evolution equations describing incompressible granular flow, J. Differ. Equ. 66 (1987) 61-74. [34] K. Agrawal, P.N. Loezos, M. Syamlal, S. Sundaresan, The role of meso-scale structures in rapid gas-solid flows, J. Fluid Mech. 445 (2001) 151-185. [35] J.H. Li, M. Kwauk, Exploring complex systems in chemical engineering-The multi-scale methodology, Chem. Eng. Sci. 58 (3-6) (2003) 521-535. [36] H.D. Zhang, W.B. Li, Q. Ma, Y.W. Zhang, F.L. Lei, Numerical study on influence of exit geometry in gas-solid flow hydrodynamics of HDCFB riser by CPFD, Adv. Powder Technol. 31 (9) (2020) 4005-4017. [37] P.F. Ren, Y.W. Zhang, W.B. Li, K. Yu, Turbulent mass transfer model for simulating protein desorption in liquid-solid circulating fluidized bed risers, Particuology 57 (2021) 167-175. [38] A.S. Issangya, Flow dynamics in high density circulating fluidized beds, Ph.D. Thesis, The University of British Columbia, Canada, 1998. [39] H.T. Bi, P.C. Su, Local phase holdups in gas-solids fluidization and transport, AIChE J. 47 (9) (2001) 2025-2031. [40] J. Yerushalmi, N.T. Cankurt, Further studies of the regimes of fluidization, Powder Technol. 24 (2) (1979) 187-205. [41] X.H. Liu, S.W. Hu, Y.F. Jiang, J.H. Li, Extension and application of energy-minimization multi-scale (EMMS) theory for full-loop hydrodynamic modeling of complex gas-solid reactors, Chem. Eng. J. 278 (2015) 492-503. |