[1] J.A. Camargo, A. Alonso, Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment, Environ. Int. 32(6) (2006) 831-849. [2] J. Domagalski, C. Lin, Y. Luo, J. Kang, S.M. Wang, L.R. Brown, M.D. Munn, Eutrophication study at the Panjiakou-Daheiting Reservoir system, northern Hebei Province, People's Republic of China: chlorophyll-a model and sources of phosphorus and nitrogen, Agric. Water Manag. 94(1-3) (2007) 43-53. [3] F. Di Capua, F. Iannacone, F. Sabba, G. Esposito, Simultaneous nitrification-denitrification in biofilm systems for wastewater treatment: key factors, potential routes, and engineered applications, Bioresour. Technol. 361(2022) 127702. [4] J.L. Wang, Y.Z. Peng, S.Y. Wang, Y.Q. Gao, Nitrogen removal by simultaneous nitrification and denitrification via nitrite in a sequence hybrid biological reactor, Chin. J. Chem. Eng. 16(5) (2008) 778-784. [5] S. Mishra, V. Singh, L. Cheng, A. Hussain, B. Ormeci, Nitrogen removal from wastewater: a comprehensive review of biological nitrogen removal processes, critical operation parameters and bioreactor design, J. Environ. Chem. Eng. 10(3) (2022) 107387. [6] Yuan J, Huang S, Yuan H, Fu F, Zhang Y. Effects of chloramphenicol on the bacterial community structure and simultaneous nitrification and denitrification performance in a sequencing biofilm batch reactor. J. Water Process Eng., 42(2021): 102095. [7] L. Luo, W. Zhou, Y. Yuan, H. Zhong, C. Zhong, Effects of salinity shock on simultaneous nitrification and denitrification by a membrane bioreactor: performance, sludge activity, and functional microflora, Sci. Total Environ. 801(2021) 149748. [8] Q. Feng, Y.Y. Yu, C. Guo, X.D. Chen, J.S. Cao, W. Yang, Investigation of the influence of Ni(ii) exposure on the simultaneous nitrification and denitrification of aerobic granules from an internal oxygen penetration perspective, RSC Adv. 7(19) (2017) 11608-11615. [9] A. Daverey, Y.C. Chen, S. Sung, J.G. Lin, Effect of zinc on anammox activity and performance of simultaneous partial nitrification, anammox and denitrification (SNAD) process, Bioresour. Technol. 165(2014) 105-110. [10] H. Wang, Z.J. Ren, Bioelectrochemical metal recovery from wastewater: a review, Water Res. 66(2014) 219-232. [11] H.D. Robinson, K. Knox, B.D. Bone, A. Picken, Leachate quality from landfilled MBT waste, Waste Manag. N Y N Y 25(4) (2005) 383-391. [12] Y. Liu, Z.Z. Xin, J. Song, X.Y. Zhu, Q.N. Liu, D.Z. Zhang, B.P. Tang, C.L. Zhou, L.S. Dai, Transcriptome analysis reveals potential antioxidant defense mechanisms in antheraea pernyi in response to zinc stress, J. Agric. Food Chem. 66(30) (2018) 8132-8141. [13] C.E. Outten, T.V. O'Halloran, Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis, J. Neural. Eng. 292(5526) (2001) 2488-2492. [14] T. Wu, J. Ding, L. Zhong, Y.L. Zhao, H.J. Sun, J.W. Pang, L. Zhao, S.W. Bai, N.Q. Ren, S.S. Yang, Synergistic analysis of performance, functional genes, and microbial community assembly in SNDPR process under Zn(II) stress, Environ. Res. 224(2023) 115513. [15] X. Zhang, Z. Chen, Y. Ma, Y. Zhou, S. Zhao, L. Wang, H. Zhai, Influence of elevated Zn (II) on Anammox system: microbial variation and zinc tolerance, Bioresour. Technol. 251(2018) 108-113. [16] P. Gutwinski, G. Cema, A. Ziembinska-Buczynska, K. Wyszynska, J. Surmacz-Gorska, Long-term effect of heavy metals Cr(III), Zn(II), Cd(II), Cu(II), Ni(II), Pb(II) on the anammox process performance, J. Water Process Eng. 39(2021) 101668. [17] L. Fan, H. Li, Y. Chen, F. Jia, T. Liu, J. Guo, H. Yao, Evaluation of the joint effects of Cu2+, Zn2+ and Mn2+ on completely autotrophic nitrogen-removal over nitrite (CANON) process, Chemosphere 286(pt 3) (2022) 131896. [18] Y.F. Cheng, G.F. Li, Y.Y. Liu, B.Q. Zhu, Q. Zhang, Y. Xue, Z.Z. Zhang, R.C. Jin, Evaluating the effects of Zn(II) on high-rate biogranule-based denitrification: performance, microbial community and sludge characteristics, Bioresour. Technol. 279(2019) 393-397. [19] Y. Liu, Y. Han, J. Guo, J. Zhang, Y. Hou, Y. Song, C. Lu, H. Li, Y. Zhong, New insights of simultaneous partial nitritation, anammox and denitrification (SNAD) system to Zn(II) exposure: focus on affecting the regulation of quorum sensing on extracellular electron transfer and microbial metabolism, Bioresour. Technol. 346(2022) 126602. [20] H. Chen, Y. Wang, P.Y. Wang, Y.K. Lv, Assessing quinoline removal performances of an aerobic continuous moving bed biofilm reactor (MBBR) bioaugmented with Pseudomonas citronellolis LV1, Chin. J. Chem. Eng. 57(2023) 132-140. [21] J. Hou, G. You, Y. Xu, C. Wang, P. Wang, L. Miao, Y. Ao, Y. Li, B. Lv, Effects of CeO2 nanoparticles on biological nitrogen removal in a sequencing batch biofilm reactor and mechanism of toxicity, Bioresour. Technol. 191(2015) 73-78. [22] Lowry O, Rosenburgh N, Farr A, Randall R. Protein measurements with the folin-phenol reagent[J]. J. Biol. Chem., 193(1951): 265-275. [23] Dubios M, Gilles K A, Hamilton J K, Rebers P A, Smith F. Colorimetric method for determination of sugar and related substances[J]. Anal. Chem., 28(1956): 350-356. [24] Y. Zhou, M.N. Anwar, B. Guo, W. Huang, Y. Liu, Response of antibiotic resistance genes and microbial niches to dissolved oxygen in an oxygen-based membrane biofilm reactor during greywater treatment, Sci. Total Environ. 833(2022) 155062. [25] D. Pan, S. Shao, J. Zhong, M. Wang, X. Wu, Performance and mechanism of simultaneous nitrification-denitrification and denitrifying phosphorus removal in long-term moving bed biofilm reactor (MBBR), Bioresour. Technol. 348(2022) 126726. [26] Q. He, H. Wang, L. Chen, S. Gao, W. Zhang, J. Song, J. Yu, Elevated salinity deteriorated enhanced biological phosphorus removal in an aerobic granular sludge sequencing batch reactor performing simultaneous nitrification, denitrification and phosphorus removal, J. Hazard Mater. 390(2020) 121782. [27] Q. He, H. Wang, L. Chen, S. Gao, W. Zhang, J. Song, J. Yu, Robustness of an aerobic granular sludge sequencing batch reactor for low strength and salinity wastewater treatment at ambient to winter temperatures, J. Hazard Mater. 384(2020) 121454. [28] Z.Y. Wang, W.Q. Fu, L.Y. Hu, M. Zhao, T.J. Guo, D. Hrynsphan, S. Tatsiana, J. Chen, Improvement of electron transfer efficiency during denitrification process by Fe-Pd/multi-walled carbon nanotubes: possessed redox characteristics and secreted endogenous electron mediator, Sci. Total Environ. 781(2021) 146686. [29] X. Wen, D. Liang, Y. Hu, X. Zhu, G. Wang, J. Xie, Performance and mechanism of simultaneous nitrification and denitrification in zeolite spheres internal loop airlift reactor, Bioresour. Technol. 380(2023) 129073. [30] S. Shi, X. He, L. He, X. Fan, B. Shu, J. Zhou, Q. He, Overlooked pathways of endogenous simultaneous nitrification and denitrification in anaerobic/aerobic/anoxic sequencing batch reactors with organic supplementation, Water Res. 230(2023) 119493. [31] Y.N. Luan, Y. Yin, Y. Xu, F. Zhang, X. Wang, F. Zhao, Y. Xiao, C. Liu, Simultaneous nitrification and denitrification in a novel rotating self-aerated biofilm reactor for decentralized wastewater treatment, Bioresour. Technol. 369(2023) 128513. [32] Q. Hu, N. Zhou, E.R. Rene, D. Wu, D. Sun, B. Qiu, Stimulation of anaerobic biofilm development in the presence of low concentrations of toxic aromatic pollutants, Bioresour. Technol. 281(2019) 26-30. [33] H. Su, D. Zhang, P. Antwi, L. Xiao, Z. Zhang, X. Deng, C. Lai, J. Zhao, Y. Deng, Z. Liu, M. Shi, Adaptation, restoration and collapse of anammox process to La(III) stress: performance, microbial community, metabolic function and network analysis, Bioresour. Technol. 325(2021) 124731. [34] H.G. Yuan, Z. Dang, C.Z. Li, Y.Q. Zhou, B.K. Yang, S.B. Huang, Simultaneous oxygen and nitrate respiration for nitrogen removal driven by aeration: carbon/nitrogen metabolism and metagenome-based microbial ecology, J. Water Process Eng. 50(2022) 103196. [35] L. Wang, Q. Pang, Y. Zhou, F. Peng, F. He, W. Li, B. Xu, Y. Cui, X. Zhu, Robust nitrate removal and bioenergy generation with elucidating functional microorganisms under carbon constraint in a novel multianode tidal constructed wetland coupled with microbial fuel cell, Bioresour. Technol. 314(2020) 123744. [36] T. Philippon, J. Tian, C. Bureau, C. Chaumont, C. Midoux, J. Tournebize, T. Bouchez, F. Barriere, Denitrifying bio-cathodes developed from constructed wetland sediments exhibit electroactive nitrate reducing biofilms dominated by the Genera Azoarcus and Pontibacter, Bioelectrochem. Amsterdam Neth. 140(2021) 107819. [37] G.Z. Sun, Y.F. Zhu, T. Saeed, G.X. Zhang, X.G. Lu, Nitrogen removal and microbial community profiles in six wetland columns receiving high ammonia load, Chem. Eng. J. 203(2012) 326-332. [38] X. Wang, H. Zhu, B. Yan, B. Shutes, G. Banuelos, H. Wen, Bioaugmented constructed wetlands for denitrification of saline wastewater: a boost for both microorganisms and plants, Environ. Int. 138(2020) 105628. [39] X. Wang, H. Zhu, B. Yan, B. Shutes, G. Banuelos, H. Wen, R. Cheng, Improving denitrification efficiency in constructed wetlands integrated with immobilized bacteria under high saline conditions, Environ. Pollut. Barking Essex 287(2021) 117592. [40] Z.S. Huang, Z.S. Wei, X.L. Xiao, M.R. Tang, B.L. Li, X. Zhang, Nitrification/denitrification shaped the mercury-oxidizing microbial community for simultaneous Hg0 and NO removal, Bioresour. Technol. 274(2019) 18-24. [41] Z.Y. Lu, Z.F. Li, X.J. Cheng, J. Xie, X.Y. Li, X.T. Jiang, D.T. Zhu, Treatment of nitrogen-rich wastewater by mixed aeration combined with bioaugmentation in a sequencing batch biofilm reactor: biofilm Formation and nitrogen-removal capacity analysis, J. Environ. Chem. Eng. 11(2) (2023) 109316. [42] R. Pishgar, J.A. Dominic, Z. Sheng, J.H. Tay, Denitrification performance and microbial versatility in response to different selection pressures, Bioresour. Technol. 281(2019) 72-83. [43] H. Shu, H. Sun, W. Huang, Y. Zhao, Y. Ma, W. Chen, Y. Sun, X. Chen, P. Zhong, H. Yang, X. Wu, M. Huang, S. Liao, Nitrogen removal characteristics and potential application of the heterotrophic nitrifying-aerobic denitrifying bacteria Pseudomonas mendocina S16 and Enterobacter cloacae DS'5 isolated from aquaculture wastewater ponds, Bioresour. Technol. 345(2022) 126541. [44] N. Zhang, H. Chen, Y.K. Lyu, Y. Wang, Nitrogen removal by a metal-resistant bacterium, Pseudomonas putida ZN1, capable of heterotrophic nitrification-aerobic denitrification, J. Chem. Technol. Biotechnol. 94(4) (2019) 1165-1175. [45] Y. Zhang, Z. Xu, J. Li, D. Liu, Y. Yuan, Z. Chen, G. Wang, Cooperation between two strains of Enterobacter and Klebsiella in the simultaneous nitrogen removal and phosphate accumulation processes, Bioresour. Technol. 291(2019) 121854. [46] G.K. Amoako-Nimako, F.M. Chen, J.J. Fu, D. Yu, X.Y. Yang, The joint anaerobic denitrification performance of klebsiella sp. and enterobacter hormaechei using two carbon SubstratesWith andWithout the presence of heavy metals, Water Air Soil Pollut. 233(12) (2022) 531. [47] J. Yang, W. Wei, S. Pi, F. Ma, A. Li, D. Wu, J. Xing, Competitive adsorption of heavy metals by extracellular polymeric substances extracted from Klebsiella sp. J1, Bioresour. Technol. 196(2015) 533-539. [48] Y. Sun, J. Lan, Y. Du, Z. Li, X. Liao, D. Du, H. Ye, T.C. Zhang, S. Chen, Efficient removal of heavy metals by synergistic actions of microorganisms and waste molasses, Bioresour. Technol. 302(2020) 122797. |