[1] IEA, World Energy Outlook 2023, International Energy Agency, Paris, 2023. [2] C.L. Chen, C.Y. Lin, J.Y. Lee, Retrofit of steam power plants in a petroleum refinery, Appl. Therm. Eng. 61(1) (2013) 7-16. [3] D.W. Townsend, B. Linnhoff, Heat and power networks in process design. part II: Design procedure for equipment selection and process matching, AlChE. J. 29(5) (1983) 748-771. [4] V.R. Dhole, B. Linnhoff, Total site targets for fuel, co-generation, emissions, and cooling, Comput. Chem. Eng. 17(1993) S101-S109. [5] K. Raissi, Total site integration, Ph. D. Thesis, UMIST, U.K., 1994. [6] L. Sun, S. Doyle, R. Smith, Heat recovery and power targeting in utility systems, Energy 84(2015) 196-206. [7] Y. Shokri, M. Ghazi, M. Nikiyan, A. Maleki, M.A. Rosen, Optimal equipment arrangement of a total site for cogeneration of thermal and electrical energy by using exergoeconomic approach, Energy Rep. 7(2021) 5330-5343. [8] B. Wang, J.J. Klemes, P.S. Varbanov, K. Shahzad, M.R. Kabli, Total Site Heat Integration benefiting from geothermal energy for heating and cooling implementations, J. Environ. Manage. 290(2021) 112596. [9] S.A. Papoulias, I.E. Grossmann, A structural optimization approach in process synthesis-I utility systems, Comput. Chem. Eng. 7(6) (1983) 695-706. [10] S.P. Mavromatis, A.C. Kokossis, Conceptual optimisation of utility networks for operational variations-I. targets and level optimisation, Chem. Eng. Sci. 53(8) (1998) 1585-1608. [11] P.S. Varbanov, S. Doyle, R. Smith, Modelling and Optimization of Utility Systems, Chem. Eng. Res. Des. 82(5) (2004) 561-578. [12] O. Aguilar, S.J. Perry, J.K. Kim, R. Smith, Design and optimization of flexible utility systems subject to variable conditions part 1: Modelling framework, Chem. Eng. Res. Des. 85(8) (2007) 1136-1148. [13] O. Aguilar, S.J. Perry, J.K. Kim, R. Smith, Design and optimization of flexible utility systems subject to variable conditions part 2: Methodology and applications, Chem. Eng. Res. Des. 85(8) (2007) 1149-1168. [14] Z.G. Shang, A. Kokossis, A transhipment model for the optimisation of steam levels of total site utility system for multiperiod operation, Comput. Chem. Eng. 28(9) (2004) 1673-1688. [15] L. Sun, C. Liu, Reliable and flexible steam and power system design, Appl. Therm. Eng. 79(2015) 184-191. [16] J.C. Bruno, F. Fernandez, F. Castells, I.E. Grossmann, A rigorous MINLP model for the optimal synthesis and operation of utility plants, Chem. Eng. Res. Des. 76(3) (1998) 246-258. [17] C.L. Chen, C.Y. Lin, A flexible structural and operational design of steam systems, Appl. Therm. Eng. 31(13) (2011) 2084-2093. [18] L. Zhao, F.Q. You, A data-driven approach for industrial utility systems optimization under uncertainty, Energy 182(2019) 559-569. [19] H. Zhao, G. Rong, Y.P. Feng, Effective solution approach for integrated optimization models of refinery production and utility system, Ind. Eng. Chem. Res. 54(37) (2015) 9238-9250. [20] J. Jimenez-Romero, A. Azapagic, R. Smith, Style: A new optimization model for Synthesis of uTility sYstems with steam LEvel placement, Comput. Chem. Eng. 170(2023) 108060. [21] J. Jimenez-Romero, A. Azapagic, R. Smith, BEELINE: BilevEl dEcomposition aLgorithm for synthesis of Industrial eNergy systEms, Comput. Chem. Eng. 180(2024) 108406. [22] C.L. Chang, Y.F. Wang, X. Feng, Optimal synthesis of multi-plant heat exchanger networks considering both direct and indirect methods, Chin. J. Chem. Eng. 28(2) (2020) 456-465. [23] C.A. Kastner, R. Lau, M. Kraft, Quantitative tools for cultivating symbiosis in industrial parks; a literature review, Appl. Energy 155(2015) 599-612. [24] Z.Y. Cui, H. Lin, Y. Wu, Y.F. Wang, X. Feng, Optimization of pipeline network layout for multiple heat sources distributed energy systems considering reliability evaluation, Processes 9(8) (2021) 1308. [25] K. Ravi Kumar, N.V.V. Krishna Chaitanya, N. Sendhil Kumar, Solar thermal energy technologies and its applications for process heating and power generation-A review, J. Clean. Prod. 282(2021) 125296. [26] Y. Wu, R.Q. Wang, Y.F. Wang, X. Feng, An area-wide layout design method considering piecewise steam piping and energy loss, Chem. Eng. Res. Des. 138(2018) 405-417. [27] W. Wagner, J.R. Cooper, A. Dittmann, J. Kijima, H.-J. Kretzschmar, A. Kruse, R. Mares, K. Oguchi, H. Sato, I. Stocker, O. Sifner, Y. Takaishi, I. Tanishita, J. Trubenbach, T. Willkommen, The IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam, J. Eng. Gas Turbines Power 122(2000) 150-182. [28] F.K. Hwang, On steiner minimal trees with rectilinear distance, SIAM J. Appl. Math. 30(1) (1976) 104-114. [29] H. Singh, Minimisation of Flue Gas Emissions for Chemical Process Industries, Ph. D. Thesis, UMIST, U.K., 1997. [30] M.Z. Stijepovic, P. Linke, Optimal waste heat recovery and reuse in industrial zones, Energy 36(7) (2011) 4019-4031. [31] S. Huang, F. Sun, D. Sheng, H. Liu, S. Tu, J. Yang, S. Li, Y. Yang, Principles of steam Turbines, China Electric Power Press, Beijing, 2008. [32] C.L. Chen, C.Y. Lin, Design of entire energy system for chemical plants, Ind. Eng. Chem. Res. 51(30) (2012) 9980-9996. [33] J.Z. Ma, Y.F. Wang, X. Feng, Simultaneous optimization of pump and cooler networks in a cooling water system, Appl. Therm. Eng. 125(2017) 377-385. [34] A. Brooke, D. Kendrick, A. Meeraus, GAMS: A user’s guide, Release 2.25, Technical Report. GAMS Development Corporation, Washington, DC (EUA), 1992. |