[1] Y.X. Liu, L. Zhao, Y.G. Zhang, L.T. Zhang, X.J. Zan, Progress and challenges of mercury-free catalysis for acetylene hydrochlorination, Catalysts 10 (10) (2020) 1218. [2] X.X. Wang, W.Q. Chen, X.J. Lei, C. Lei, N.W. Zhu, B.B. Huang, Progress of p-block element-regulated catalysts for acetylene hydrochlorination, Coord. Chem. Rev. 500 (2024) 215541. [3] Z.B. Chen, S.S. Wang, J. Zhao, R.H. Lin, Advances in single-atom-catalyzed acetylene hydrochlorination, ACS Catal. 14 (2) (2024) 965-980. [4] S.Y. Sun, H.M. Xu, Y.R. Fan, Z.S. Liu, Q.Y. Hong, W.J. Huang, Z. Qu, N.Q. Yan, Construction of a thermally stable low-HgCl2 catalyst via chalcogen bonding and its enhanced activity in acetylene hydrochlorination, Ind. Eng. Chem. Res. 61 (46) (2022) 17057-17064. [5] G. Malta, S.A. Kondrat, S.J. Freakley, C.J. Davies, L. Lu, S. Dawson, A. Thetford, E.K. Gibson, D.J. Morgan, W. Jones, P.P. Wells, P. Johnston, C.J. Kiely, G.J. Hutchings, Identification of single-site gold catalysis in acetylene hydrochlorination, Science 355 (6332) (2017) 1399-1403. [6] S.K. Kaiser, E. Fako, G. Manzocchi, F. Krumeich, R. Hauert, A.H. Clark, O.V. Safonova, N. Lopez, J. Perez-Ramirez, Nanostructuring unlocks high performance of platinum single-atom catalysts for stable vinyl chloride production, Nat. Catal. 3 (4) (2020) 376-385. [7] B.L. Wang, Y.X. Yue, C.X. Jin, J.Y. Lu, S.S. Wang, L. Yu, L.L. Guo, R.R. Li, Z.T. Hu, Z.Y. Pan, J. Zhao, X.N. Li, Hydrochlorination of acetylene on single-atom Pd/N-doped carbon catalysts: importance of pyridinic-N synergism, Appl. Catal. B Environ. 272 (2020) 118944. [8] X.L. Wang, G.J. Lan, Z.Z. Cheng, W.F. Han, H.D. Tang, H.Z. Liu, Y. Li, Carbon-supported ruthenium catalysts prepared by a coordination strategy for acetylene hydrochlorination, Chin. J. Catal. 41 (11) (2020) 1683-1691. [9] Y.X. Yue, S.S. Wang, Q. Zhou, B.L. Wang, C.X. Jin, R.Q. Chang, L.Q. Wan, Z.Y. Pan, Y.H. Zhu, J. Zhao, X.N. Li, Tailoring asymmetric Cu-O-P coupling site by carbothermal shock method for efficient vinyl chloride synthesis over carbon supported Cu catalysts, ACS Catal. 13 (14) (2023) 9777-9791. [10] Y.L. Zhang, S. Li, X.L. Qiao, Q.X. Guan, W. Li, Efficient and stable N-heterocyclic ketone-Cu complex catalysts for acetylene hydrochlorination: the promotion effect of ligands revealed from DFT calculations, Phys. Chem. Chem. Phys. 25 (37) (2023) 25581-25593. [11] X.Y. Qiao, Z.H. Zhao, J. Zhang, Progress in mercury-free catalysts for acetylene hydrochlorination, Catal. Sci. Technol. 14 (14) (2024) 3838-3852. [12] X.L. Xu, J. Zhao, C.S. Lu, T.T. Zhang, X.X. Di, S.C. Gu, X.N. Li, Improvement of the stability of Hg/AC catalysts by CsCl for the high-temperature hydrochlorination of acetylene, Chin. Chem. Lett. 27 (6) (2016) 822-826. [13] X.L. Xu, H.H. He, J. Zhao, B.L. Wang, S.C. Gu, X.N. Li, The ligand coordination approach for improving the stability of low-mercury catalyst in the hydrochlorination of acetylene, Chin. J. Chem. Eng. 25 (9) (2017) 1217-1221. [14] J. Li, J.T. Fan, S. Ali, G.J. Lan, H.D. Tang, W.F. Han, H.Z. Liu, B. Li, Y. Li, The origin of the extraordinary stability of mercury catalysts on the carbon support: the synergy effects between oxygen groups and defects revealed from a combined experimental and DFT study, Chin. J. Catal. 40 (2) (2019) 141-146. [15] S. Ahmad, L.N. Liu, S.C. Zhang, J.C. Tang, Nitrogen-doped biochar (N-doped BC) and iron/nitrogen Co-doped biochar (Fe/N Co-doped BC) for removal of refractory organic pollutants, J. Hazard. Mater. 446 (2023) 130727. [16] S.Y. Liang, L. Huang, Y.S. Gao, Q. Wang, B. Liu, Electrochemical reduction of CO2 to CO over transition metal/N-doped carbon catalysts: the active sites and reaction mechanism, Adv. Sci. 8 (24) (2021) e2102886. [17] D.B. basha, S. Ahmed, A. Ahmed, M. Gondal, Recent advances on nitrogen doped porous carbon micro-supercapacitors: new directions for wearable electronics, J. Energy. Storage. 60 (2023) 106581-106600. [18] J. Li, H.Y. Zhang, H.X. Liang, L.S. Yao, C.C. Li, J.L. Zhang, Construction of Ru single-atom catalyst with abundant Ru-N active domains for highly efficient acetylene hydrochlorination, Mol. Catal. 543 (2023) 113158. [19] G.J. Lan, Y. Wang, Y.Y. Qiu, X.L. Wang, J. Liang, W.F. Han, H.D. Tang, H.Z. Liu, J. Liu, Y. Li, Wheat flour-derived N-doped mesoporous carbon extrudate as superior metal-free catalysts for acetylene hydrochlorination, Chem. Commun. 54 (6) (2018) 623-626. [20] G.J. Lan, J.L. Zhou, Q.F. Ye, D. Lin, Y.Y. Qiu, Z.Z. Cheng, X.C. Sun, Y. Li, A hierarchically porous carbon stabilized atomically dispersed Au catalyst for acetylene hydrochlorination, Inorg. Chem. Front. 11 (17) (2024) 5657-5665. [21] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. Montgomery, J. A, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT, 2009. [22] J.D. Chai, M. Head-Gordon, Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections, Phys. Chem. Chem. Phys. 10 (44) (2008) 6615-6620. [23] P.C. Hariharan, J.A. Pople, The influence of polarization functions on molecular orbital hydrogenation energies, Theor. Chim. Acta 28 (3) (1973) 213-222. [24] M.J. Frisch, J.A. Pople, J.S. Binkley, Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets, 80 (7) (1984) 3265-3269. [25] P.J. Hay, W.R. Wadt, Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg, J. Chem. Phys. 82 (1) (1985) 270-283. [26] Y.Y. Qiu, D. Fan, G.J. Lan, S.H. Wei, X.J. Hu, Y. Li, Generalized reactivity descriptor of defective carbon catalysts for acetylene hydrochlorination: the ratio of sp2: sp3 hybridization, Chem. Commun. 56 (94) (2020) 14877-14880. [27] S. Aswathappa, L.D. Dai, S.A.T. Redfern, S. Sahaya Jude Dhas, X.L. Feng, E. Palaniyasan, R.S. Kumar, Acoustic shock wave-induced sp2-to-sp3-type phase transition: a case study of a graphite single crystal, J. Mater. Chem. C 12 (36) (2024) 14581-14589. [28] L.L. Ma, W.J. Liu, X. Hu, P.K.S. Lam, J.R. Zeng, H.Q. Yu, Ionothermal carbonization of biomass to construct sp2/sp3 carbon interface in N-doped biochar as efficient oxygen reduction electrocatalysts, Chem. Eng. J. 400 (2020) 125969. [29] A. Kovtun, D. Jones, S. Dell’Elce, E. Treossi, A. Liscio, V. Palermo, Accurate chemical analysis of oxygenated graphene-based materials using X-ray photoelectron spectroscopy, Carbon 143 (2019) 268-275. [30] X.D. Liang, N. Tian, Z.Y. Zhou, S.G. Sun, N, P dual-doped porous carbon nanosheets for high-efficiency CO2 electroreduction, ACS Sustainable Chem. Eng. 10 (5) (2022) 1880-1887. [31] S.H. Wei, Y.Y. Qiu, X.C. Sun, X.L. Wang, H.T. Li, G.J. Lan, J. Liu, Y. Li, Sustainable Nanoporous Carbon Catalysts Derived from Melamine Assisted Cross-Linking of Poly(vinyl chloride) Waste for Acetylene Hydrochlorination, ACS Sustainable Chem. Eng. 10 (2022) 10476–10485. [32] Y. Xie, Q. Xu, Y. Tang, C. Bai, C. Dai, Scanning tunneling microscopy investigation of a spontaneous monolayer dispersion system: HgCl2 on highly oriented pyrolitic graphite surface, J. Vac. Sci. Technol. A Vac. Surf. Films 8 (1) (1990) 610-613. [33] C.M. Wang, B.Y. Zhao, Y.C. Xie, Advances in the studies of spontaneous monolayer dispersion of oxides and salts on supports, Chin. J. Catal. 24 (6) (2003) 475-482. [34] L. He, Y.Y. Qiu, C. Yao, G.J. Lan, N. Li, H.C. Zhou, Q.S. Liu, X.C. Sun, Z.Z. Cheng, Y. Li, Role of intrinsic defects on carbon adsorbent for enhanced removal of Hg2+ in aqueous solution, Chin. J. Chem. Eng. 61 (2023) 129-139. [35] Y. Zhang, X.X. Zhang, K. Sang, W.Y. Chen, G. Qian, J. Zhang, X.Z. Duan, X.G. Zhou, W.K. Yuan, Kinetics insights into size effects of carbon nanotubes’ growth and their supported platinum catalysts for 4, 6-dinitroresorcinol hydrogenation, Chin. J. Chem. Eng. 72 (2024) 133-140. [36] C.T. Toh, H. Zhang, J. Lin, A.S. Mayorov, Y.P. Wang, C.M. Orofeo, D.B. Ferry, H. Andersen, N. Kakenov, Z. Guo, I.H. Abidi, H. Sims, K. Suenaga, S.T. Pantelides, B. Ozyilmaz, Synthesis and properties of free-standing monolayer amorphous carbon, Nature 577 (7789) (2020) 199-203. [37] Y. Qiu, S. Ali, G. Lan, H. Tong, J. Fan, H. Liu, B. Li, W. Han, H. Tang, H. Liu, Y. Li, Defect-rich activated carbons as active and stable metal-free catalyst for acetylene hydrochlorination, Carbon 146 (2019) 406–412. [38] X.Y. Luo, H. Zheng, W.D. Lai, P. Yuan, S.W. Li, D. Li, Y. Chen, Defect engineering of carbons for energy conversion and storage applications, Energy Environ. Mater. 6 (3) (2023) 12402. [39] P. Behra, P. Bonnissel-Gissinger, M. Alnot, R. Revel, J.J. Ehrhardt, XPS and XAS study of the sorption of Hg(II) onto pyrite, Langmuir 17 (13) (2001) 3970-3979. [40] P.J. Lv, S. Chang, Q.Q. Hong, J. Mei, S.J. Yang, Outstanding performance of reproducible sulfureted Fe-Ti spinel for the centralized control of Hg (both gaseous Hg0 and aqueous Hg2+) emitted from coal-fired power plants with seawater flue gas desulfurization, Chem. Eng. J. 483 (2024) 148955. |