[1] P. Lamba, P. Singh, P. Singh, P. Singh, Bharti, A. Kumar, M. Gupta, Y. Kumar, Recent advancements in supercapacitors based on different electrode materials: Classifications, synthesis methods and comparative performance, J. Energy Storage 48 (2022) 103871. [2] H.W. Hu, C. Yang, F.Y. Chen, J.H. Li, X.L. Jia, Y.T. Wang, X.L. Zhu, Z.M. Man, G. Wu, W.X. Chen, High-entropy engineering reinforced surface electronic states and structural defects of hierarchical metal Oxides@Graphene fibers toward high-performance wearable supercapacitors, Adv. Mater. 36 (35) (2024) e2406483. [3] M.N. Sakib, S. Ahmed, S.M. Sultan Mahmud Rahat, S.B. Shuchi, A review of recent advances in manganese-based supercapacitors, J. Energy Storage 44 (2021) 103322. [4] S. Li, L.L. Yu, Y.T. Shi, J. Fan, R.B. Li, G.D. Fan, W.L. Xu, J.T. Zhao, Greatly enhanced faradic capacities of 3D porous Mn3O4/G composites as lithium-ion anodes and supercapacitors by C-O-Mn bonding, ACS Appl. Mater. Interfaces 11 (10) (2019) 10178-10188. [5] L. Shan, Y. Zhang, Y. Xu, M.J. Gao, T. Xu, C.L. Si, Wood-based hierarchical porous nitrogen-doped carbon/manganese dioxide composite electrode materials for high-rate supercapacitor, Adv. Compos. Hybrid Mater. 6 (5) (2023) 174. [6] Y. Ding, Y.C. Li, L. Wang, X.H. Han, L.J. Zhu, S.R. Wang, A novel approach for preparing nitrogen-doped porous nanocomposites for supercapacitors, Fuel 304 (2021) 121449. [7] Y.H. Lin, T.Y. Wei, H.C. Chien, S.Y. Lu, Manganese oxide/carbon aerogel composite: an outstanding supercapacitor electrode material, Adv. Energy Mater. 1 (5) (2011) 901-907. [8] H.N. Jia, Z.Y. Wang, C. Li, X.Q. Si, X.H. Zheng, Y.F. Cai, J.H. Lin, H.Y. Liang, J.L. Qi, J. Cao, J.C. Feng, W.D. Fei, Designing oxygen bonding between reduced graphene oxide and multishelled Mn3O4 hollow spheres for enhanced performance of supercapacitors, J. Mater. Chem. A 7 (12) (2019) 6686-6694. [9] B.S. Singu, E.S. Goda, K.R. Yoon, Carbon Nanotube-Manganese oxide nanorods hybrid composites for high-performance supercapacitor materials, J. Ind. Eng. Chem. 97 (2021) 239-249. [10] S.F. Zhang, L. Li, Y.L. Liu, Q.L. Li, Nanocellulose/carbon nanotube/manganese dioxide composite electrodes with high mass loadings for flexible supercapacitors, Carbohydr. Polym. 326 (2024) 121661. [11] M.Y. Wang, Y. Huang, N. Zhang, K. Wang, X.F. Chen, X. Ding, A facile synthesis of controlled Mn3O4 hollow polyhedron for high-performance lithium-ion battery anodes, Chem. Eng. J. 334 (2018) 2383-2391. [12] M.X. Liu, M.C. Shi, W.J. Lu, D.Z. Zhu, L.C. Li, L.H. Gan, Core-shell reduced graphene oxide/MnOx @carbon hollow nanospheres for high performance supercapacitor electrodes, Chem. Eng. J. 313 (2017) 518-526. [13] D. Malavekar, S. Pujari, S. Jang, S. Bachankar, J.H. Kim, Recent development on transition metal oxides-based core-shell structures for boosted energy density supercapacitors, Small 20 (31) (2024) e2312179. [14] W. Guo, C. Yu, S.F. Li, Z. Wang, J.H. Yu, H.W. Huang, J.S. Qiu, Strategies and insights towards the intrinsic capacitive properties of MnO2 for supercapacitors: Challenges and perspectives, Nano Energy 57 (2019) 459-472. [15] C.A. Romano, M.W. Zhou, Y. Song, V.H. Wysocki, A.C. Dohnalkova, L. Kovarik, L. Pasa-Tolic, B.M. Tebo, Biogenic manganese oxide nanoparticle formation by a multimeric multicopper oxidase Mnx, Nat. Commun. 8 (1) (2017) 746. [16] S. Comert, O. Tepe, Production and characterization of biogenic manganese oxides by manganese-adapted Pseudomonas putida NRRL B-14878, geomicrobiol j 37 (8) (2020) 753-763. [17] R.Q. Wu, H.B. Wu, X.B. Jiang, J.Y. Shen, M. Faheem, X.Y. Sun, J.S. Li, W.Q. Han, L.J. Wang, X.D. Liu, The key role of biogenic manganese oxides in enhanced removal of highly recalcitrant 1, 2, 4-triazole from bio-treated chemical industrial wastewater, Environ. Sci. Pollut. Res. Int. 24 (11) (2017) 10570-10583. [18] Z. Zhang, Z.M. Zhang, H. Chen, J. Liu, C. Liu, H. Ni, C.S. Zhao, M. Ali, F. Liu, L. Li, Surface Mn(II) oxidation actuated by a multicopper oxidase in a soil bacterium leads to the formation of manganese oxide minerals, Sci. Rep. 5 (2015) 10895. [19] S. Namgung, C.M. Chon, G. Lee, Formation of diverse Mn oxides: a review of bio/geochemical processes of Mn oxidation, Geosci. J. 22 (2) (2018) 373-381. [20] J. Liu, T. Gu, L. Li, L. Li, Synthesis of MnO/C/NiO-doped porous Multiphasic composites for lithium-ion batteries by biomineralized Mn oxides from engineered Pseudomonas putida cells, Nanomaterials 11 (2) (2021) 361. [21] B.P. Hahn, J.W. Long, D.R. Rolison, Something from nothing: enhancing electrochemical charge storage with cation vacancies, Acc. Chem. Res. 46 (5) (2013) 1181-1191. [22] S. Yi, L. Wang, X. Zhang, C. Li, W.J. Liu, K. Wang, X.Z. Sun, Y.N. Xu, Z.X. Yang, Y. Cao, J. Sun, Y.W. Ma, Cationic intermediates assisted self-assembly two-dimensional Ti3C2Tx/rGO hybrid nanoflakes for advanced lithium-ion capacitors, Sci. Bull. 66 (9) (2021) 914-924. [23] P.H. Chen, W.Y. Zhou, Z.J. Xiao, S.Q. Li, H.L. Chen, Y.C. Wang, Z.B. Wang, W. Xi, X.G. Xia, S.S. Xie, In situ anchoring MnO nanoparticles on self-supported 3D interconnected graphene scroll framework: a fast kinetics boosted ultrahigh-rate anode for Li-ion capacitor, Energy Storage Mater. 33 (2020) 298-308. [24] G.Z. Jin, X.X. Xiao, S. Li, K.M. Zhao, Y.Z. Wu, D. Sun, F. Wang, Strongly coupled graphene/Mn3O4 composite with enhanced electrochemical performance for supercapacitor electrode, Electrochim. Acta 178 (2015) 689-698. [25] F.C. Boogerd, J.P. de Vrind, Manganese oxidation by leptothrix Discophora, J. Bacteriol. 169 (2) (1987) 489-494. [26] Y.H. Gao, L. Wang, F. Wang, Y.Y. Sun, Y.J. Xu, J. Li, L. Wang, Z.S. Lu, Ball milling combined with activation preparation of honeycomb-like porous carbon derived from peony seed shell for high-performance supercapacitors, J. Mater. Sci. Mater. Electron. 33 (16) (2022) 13023-13039. [27] D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets, Nat. Nanotechnol. 3 (2) (2008) 101-105. [28] G.N. Liang, Y. Yang, S.M. Wu, Y.H. Jiang, Y.F. Xu, The generation of biogenic manganese oxides and its application in the removal of As(III) in groundwater, Environ. Sci. Pollut. Res. Int. 24 (21) (2017) 17935-17944. [29] Y. Ding, L.X. Dai, R. Wang, H.X. Wang, H.B. Zhang, W. Jiang, J. Tang, S.Q. Zang, Bio-inspired Mn3O4@N, P-doped carbon cathode for 2.6 V flexible aqueous asymmetric supercapacitors, Chem. Eng. J. 407 (2021) 126874. [30] F.M. Wu, J.P. Gao, X.G. Zhai, M.H. Xie, Y. Sun, H.Y. Kang, Q. Tian, H.X. Qiu, Hierarchical porous carbon microrods derived from albizia flowers for high performance supercapacitors, Carbon 147 (2019) 242-251. [31] W.J. Liu, X. Zhang, Y.N. Xu, L. Wang, Z. Li, C. Li, K. Wang, X.Z. Sun, Y.B. An, Z.S. Wu, Y.W. Ma, 2D graphene/MnO heterostructure with strongly stable interface enabling high-performance flexible solid-state lithium-ion capacitors, Adv. Funct. Mater. 32 (30) (2022) 2202342. [32] C.N. Butterfield, A.V. Soldatova, S.W. Lee, T.G. Spiro, B.M. Tebo, Mn(II, III) oxidation and MnO2 mineralization by an expressed bacterial multicopper oxidase, Proc. Natl. Acad. Sci. USA 110 (29) (2013) 11731-11735. [33] Y.L. Qin, B.W. Wang, S.P. Jiang, Q.S. Jiang, C.H. Huang, H.C. Chen, Strongly anchored MnO nanoparticles on graphene as high-performance anode materials for lithium-ion batteries, Ionics 26 (7) (2020) 3315-3323. [34] Y. Zhang, P.H. Chen, X. Gao, B. Wang, H. Liu, H. Wu, H.K. Liu, S.X. Dou, Nitrogen-doped graphene ribbon assembled core-sheath MnO@Graphene scrolls as hierarchically ordered 3D porous electrodes for fast and durable lithium storage, Adv. Funct. Mater. 26 (43) (2016) 7754-7765. [35] Q.L. Fang, X.F. Zhou, W. Deng, Y.W. Liu, Z. Zheng, Z.P. Liu, Nitrogen-doped graphene nanoscroll foam with high diffusion rate and binding affinity for removal of organic pollutants, Small 13 (14) (2017) 1603779. [36] T. Sharifi, E. Gracia-Espino, H. Reza Barzegar, X.E. Jia, F. Nitze, G.Z. Hu, P. Nordblad, C.W. Tai, T. Wagberg, Formation of nitrogen-doped graphene nanoscrolls by adsorption of magnetic γ-Fe2O3 nanoparticles, Nat. Commun. 4 (2013) 2319. [37] N. Okibe, M. Maki, K. Sasaki, T. Hirajima, Mn(II)-oxidizing activity of Pseudomonas sp. strain MM1 is involved in the formation of massive Mn sediments around sambe hot springs in Japan, Mater. Trans. 54 (10) (2013) 2027-2031. [38] M.Y. Gao, X.F. Wu, H.F. Qiu, Q.F. Zhang, K.K. Huang, S.H. Feng, Y. Yang, T.T. Wang, B. Zhao, Z.L. Liu, Reduced graphene oxide-mediated synthesis of Mn3O4 nanomaterials for an asymmetric supercapacitor cell, RSC Adv. 8 (37) (2018) 20661-20668. [39] J. Yao, S.S. Yao, F. Gao, L.M. Duan, M.T. Niu, J.H. Liu, Reduced graphene oxide/Mn3O4 nanohybrid for high-rate pseduocapacitive electrodes, J. Colloid Interface Sci. 511 (2018) 434-439. [40] J.F. Shi, M.X. Sun, H.M. Hu, One-step combustion synthesis of C-Mn3O4/MnO composites with high electrochemical performance for supercapacitor, Mater. Res. Express 6 (3) (2019) 035511. [41] A. Gangwar, T. Das, S.K. Shaw, N.K. Prasad, Nanocomposite of (α-Mn3O4/MnO)@rGO as a high performance electrode material for supercapacitors, Electrochim. Acta 390 (2021) 138823. [42] P.R. Garces Goncalves Jr, H.A. De Abreu, H.A. Duarte, Stability, structural, and electronic properties of hausmannite (Mn3O4) surfaces and their interaction with water, J. Phys. Chem. C 122 (36) (2018) 20841-20849. [43] S.P. Rong, P.Y. Zhang, F. Liu, Y.J. Yang, Engineering crystal facet of α-MnO2 nanowire for highly efficient catalytic oxidation of carcinogenic airborne formaldehyde, ACS Catal. 8 (4) (2018) 3435-3446. [44] G.X. Zhu, W. Zhu, Y. Lou, J. Ma, W.Q. Yao, R.L. Zong, Y.F. Zhu, Encapsulate α-MnO2 nanofiber within graphene layer to tune surface electronic structure for efficient ozone decomposition, Nat. Commun. 12 (1) (2021) 4152. [45] E. Sohouli, K. Adib, B. Maddah, M. Najafi, Preparation of a supercapacitor electrode based on carbon nano-Onions/manganese dioxide/iron oxide nanocomposite, J. Energy Storage 52 (2022) 104987. [46] M. Yang, D.S. Kim, S.B. Hong, J.W. Sim, J. Kim, S.S. Kim, B.G. Choi, MnO2 nanowire/biomass-derived carbon from hemp stem for high-performance supercapacitors, Langmuir 33 (21) (2017) 5140-5147. [47] A. Sumboja, C.Y. Foo, X. Wang, P.S. Lee, Large areal mass, flexible and free-standing reduced graphene oxide/manganese dioxide paper for asymmetric supercapacitor device, Adv. Mater. 25 (20) (2013) 2809-2815. [48] Y.Z. Zhang, T. Cheng, Y. Wang, W.Y. Lai, H. Pang, W. Huang, A simple approach to boost capacitance: flexible supercapacitors based on manganese Oxides@MOFs via chemically induced in situ self-transformation, Adv. Mater. 28 (26) (2016) 5242-5248. [49] Y.T. Hu, C. Guan, G.X. Feng, Q.Q. Ke, X.L. Huang, J. Wang, Flexible asymmetric supercapacitor based on structure-optimized Mn3O4/reduced graphene oxide nanohybrid paper with high energy and power density, Adv. Funct. Mater. 25 (47) (2015) 7291-7299. [50] Y.S. Wu, R. Feng, C.J. Song, S.T. Xing, Y.Z. Gao, Z.C. Ma, Effect of reducing agent on the structure and activity of manganese oxide octahedral molecular sieve (OMS-2) in catalytic combustion of o-xylene, Catal. Today 281 (2017) 500-506. [51] F. Gao, J.Y. Qu, Z.B. Zhao, Q. Zhou, B.B. Li, J.S. Qiu, A green strategy for the synthesis of graphene supported Mn3O4 nanocomposites from graphitized coal and their supercapacitor application, Carbon 80 (2014) 640-650. [52] G.Z. Zhao, Y.J. Li, G. Zhu, J.Y. Shi, T. Lu, L.K. Pan, Biomass-based N, P, and S self-doped porous carbon for high-performance supercapacitors, ACS Sustainable Chem. Eng. (2019) acssuschemeng.9b00725. [53] D.V. Lam, D.T. Dung, E. Roh, J.H. Kim, H. Kim, S.M. Lee, Metal-organic framework-templated graphitic carbon confining MnO/Mn3O4 nanoparticles via direct laser printing for electrocatalysis and supercapacitor, Adv. Mater. Interfaces 8 (22) (2021) 2101599. [54] D. Zhou, H.M. Lin, F. Zhang, H. Niu, L.R. Cui, Q. Wang, F.Y. Qu, Freestanding MnO2 nanoflakes/porous carbon nanofibers for high-performance flexible supercapacitor electrodes, Electrochim. Acta 161 (2015) 427-435. [55] N.N. Song, Y. Wu, W.C. Wang, D. Xiao, H.J. Tan, Y.P. Zhao, Layer-by-layer in situ growth flexible polyaniline/graphene paper wrapped by MnO2 nanoflowers for all-solid-state supercapacitor, Mater. Res. Bull. 111 (2019) 267-276. [56] Y. Wang, W.H. Lai, N. Wang, Z. Jiang, X.Y. Wang, P.C. Zou, Z.Y. Lin, H.J. Fan, F.Y. Kang, C.P. Wong, C. Yang, A reduced graphene oxide/mixed-valence manganese oxide composite electrode for tailorable and surface mountable supercapacitors with high capacitance and super-long life, Energy Environ. Sci. 10 (4) (2017) 941-949. [57] N. Zhao, L.B. Deng, D.W. Luo, P.X. Zhang, One-step fabrication of biomass-derived hierarchically porous carbon/MnO nanosheets composites for symmetric hybrid supercapacitor, Appl. Surf. Sci. 526 (2020) 146696. [58] A.T. Chidembo, S.H. Aboutalebi, K. Konstantinov, C.J. Jafta, H.K. Liu, K.I. Ozoemena, In situ engineering of urchin-like reduced graphene oxide-Mn2O3-Mn3O4 nanostructures for supercapacitors, RSC Adv. 4 (2) (2014) 886-892. |