[1] Y.Y. Zhang, L. Wang, L. Chen, B. Ma, Y.K. Zhang, W. Ni, D.C.W. Tsang, Treatment of municipal solid waste incineration fly ash: State-of-the-art technologies and future perspectives, J. Hazard. Mater. 411 (2021) 125132. [2] G. Li, Common technical analysis of municipal solid waste treatment, Science and Technology & Innovation 24 (2019) 131-132. [3] B. Leckner, Process aspects in combustion and gasification Waste-to-Energy (WtE) units, Waste Manag. 37 (2015) 13-25. [4] L.L. Yang, G.R. Liu, Q.Q. Zhu, M.H. Zheng, Small-scale waste incinerators in rural China: Potential risks of dioxin and polychlorinated naphthalene emissions, Emerg. Contam. 5 (2019) 31-34. [5] Y. Jeong, S.J. Kim, K.H. Shin, S.Y. Hwang, Y.R. An, H.B. Moon, Accumulation and temporal changes of PCDD/Fs and dioxin-like PCBs in finless porpoises (Neophocaena asiaeorientalis) from Korean coastal waters: Tracking the effectiveness of regulation, Mar. Pollut. Bull. 105 (1) (2016) 30-36. [6] J.J. Zhang, S.G. Zhang, B. Liu, Degradation technologies and mechanisms of dioxins in municipal solid waste incineration fly ash: a review, J. Clean. Prod. 250 (2020) 119507. [7] A. Sanlisoy, M.O. Carpinlioglu, A review on plasma gasification for solid waste disposal, Int. J. Hydrog. Energy 42 (2) (2017) 1361-1365. [8] I.W. Nah, K.Y. Hwang, Y.G. Shul, Effect of metal and glycol on mechanochemical dechlorination of polychlorinated biphenyls (PCBs), Chemosphere 73 (1) (2008) 138-141. [9] S. Hashimoto, K. Watanabe, K. Nose, M. Morita, Remediation of soil contaminated with dioxins by subcritical water extraction, Chemosphere 54 (1) (2004) 89-96. [10] Y. Lee, M.C. Cui, J. Choi, J. Kim, Y. Son, J. Khim, Degradation of polychlorinated dibenzo-p-dioxins and dibenzofurans in real-field soil by an integrated visible-light photocatalysis and solvent migration system with p-n heterojunction BiVO4/Bi2O3, J. Hazard. Mater. 344 (2018) 1116-1125. [11] M. Megharaj, B. Ramakrishnan, K. Venkateswarlu, N. Sethunathan, R. Naidu, Bioremediation approaches for organic pollutants: a critical perspective, Environ. Int. 37 (8) (2011) 1362-1375. [12] Q. Wang, J.H. Yan, Y. Chi, X.D. Li, S.Y. Lu, Application of thermal plasma to vitrify fly ash from municipal solid waste incinerators, Chemosphere 78 (5) (2010) 626-630. [13] F.K. Urakaev, V.V. Boldyrev, Mechanism and kinetics of mechanochemical processes in comminuting devices 2. Applications of the theory. Experiment, Powder Technol. 107 (3) (2000) 197-206. [14] Z.L. Chen, Q.J. Mao, S.Y. Lu, A. Buekens, S.X. Xu, X. Wang, J.H. Yan, Dioxins degradation and reformation during mechanochemical treatment, Chemosphere 180 (2017) 130-140. [15] M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O’Shea, M.H. Entezari, D.D. Dionysiou, A review on the visible light active titanium dioxide photocatalysts for environmental applications, Appl. Catal. B Environ. 125 (2012) 331-349. [16] P.L. W, Review: in situ and bioremediation of organic pollutants in aquatic sediments, J. Hazard. Mater. 177 (1-3) (2010) 81-89. [17] Z.R. Sun, F. Takahashi, Y. Odaka, K. Fukushi, Y. Oshima, K. Yamamoto, Effects of potassium alkalis and sodium alkalis on the dechlorination of o-chlorophenol in supercritical water, Chemosphere 66 (1) (2007) 151-157. [18] G. Brunner, Near critical and supercritical water. Part I. Hydrolytic and hydrothermal processes, J. Supercrit. Fluids 47 (3) (2009) 373-381. [19] S.K. Bhargava, J. Tardio, J. Prasad, K. Foger, D.B. Akolekar, S.C. Grocott, Wet oxidation and catalytic wet oxidation, Ind. Eng. Chem. Res. 45 (4) (2006) 1221-1258. [20] D.Z. Chen, Y.Y. Hu, P.F. Zhang, Hydrothermal treatment of incineration fly ash for PCDD/Fs decomposition: the effect of iron addition, Environ. Technol. 33 (22-24) (2012) 2517-2523. [21] Y.Y. Hu, P.F. Zhang, D.Z. Chen, B. Zhou, J.Y. Li, X.W. Li, Hydrothermal treatment of municipal solid waste incineration fly ash for dioxin decomposition, J. Hazard. Mater. 207-208 (2012) 79-85. [22] J.L. Xie, Y.Y. Hu, D.Z. Chen, B. Zhou, Chemical decomposition of PCDDs and PCDFs with carbonic dihydrazide in MSWI fly ash, Environ. Pollut. Contr. 30 (11) (2008) 1-3, 8. [23] T. Zhang, Y.C. Yang, K. Zhou, B. Liu, G.P. Tian, W. Zuo, H.Y. Zhou, B. Bian, Hydrothermal oxidation degradation of dioxins in fly ash with water-washing and added Ce-Mn catalyst, J. Environ. Manage. 317 (2022) 115430. [24] Y.F. Wang, X.D. Li, J. Jin, J.H. Yan, Hydrothermal decomposition of polychlorinated divenzo-p-dioxins and dibenzofurans in fly ash of medical waste incinerator, Proc. CSEE 30 (26) (2010) 56-61. [25] Y.Q. Jin, X.J. Ma, X.G. Jiang, H.M. Liu, X.D. Li, J.H. Yan, Hydrothermal degradation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans in fly ash from municipal solid waste incineration under non-oxidative and oxidative conditions, Energy Fuels 27 (1) (2013) 414-420. [26] Q.L. Qiu, Q. Chen, X.G. Jiang, G.J. Lv, Z.L. Chen, S.Y. Lu, M.J. Ni, J.H. Yan, X.L. Lin, H.B. Song, J.J. Cao, Improving microwave-assisted hydrothermal degradation of PCDD/Fs in fly ash with added Na2HPO4 and water-washing pretreatment, Chemosphere 220 (2019) 1118-1125. [27] A. Suzuki, P. Selvam, T. Kusagaya, S. Takami, M. Kubo, A. Imamura, A. Miyamoto, Chemical reaction dynamics of PeCB and TCDD decomposition: a tight-binding quantum chemical molecular dynamics study with first-principles parameterization, Int. J. Quantum Chem. 102 (3) (2005) 318-327. [28] C.X. Zhang, T.L. Sun, X.M. Sun, Mechanism for OH- initiated degradation of 2, 3, 7, 8-tetrachlorinated dibenzo-p-dioxins in the presence of O2 and NO/H2O, Environ. Sci. Technol. 45 (11) (2011) 4756-4762. [29] J. Ma, X.Q. Dong, Y.Z. Yu, B.X. Zheng, M.H. Zhang, The effects of alkalis on the dechlorination of o-chlorophenol in supercritical water: Molecular dynamics simulation and experiment, Chem. Eng. J. 241 (2014) 268-272. [30] W.S. Li, L. Li, Z.Y. Wen, D.H. Yan, M.J. Liu, Q.F. Huang, Degradation mechanism of dioxins in municipal solid waste incineration fly ash by low-temperature thermal treatment, Res Environ Sci. 36 (2023) 1227-1235. [31] H. Fueno, K. Tanaka, S. Sugawa, Theoretical study of the dechlorination reaction pathways of octachlorodibenzo-p-dioxin, Chemosphere 48 (8) (2002) 771-778. [32] Y. Zhang, S.N. Zhang, X.Y. Li, Z.Y. Wang, R.J. Qu, Cross-coupling of 1, 2, 3, 4-tetrachlororodibenzo- p-dioxin with six coexisting polycyclic aromatic hydrocarbons during photodegradation on a fly ash surface, Environ. Sci. Technol. 58 (46) (2024) 20577-20587. [33] X.D. Ma, T.S. He, Y.Q. Da, F.Y. Su, R.H. Yang, Utilizing fly ash from coal-fired power plants to improve the utilization of incineration fly ash resources and reduce toxicity, J. Environ. Manage. 371 (2024) 123168. [34] N. Themba, L.L. Sibali, T.B. Chokwe, Modification of activated carbon to enhance the absorption of PCDD/F and dl-PCBs emissions in flue gas in South Africa, Discov. Appl. Sci. 6 (10) (2024) 543. [35] J. Chen, X. Pan, H.Q. Li, H.H. Jin, J.R. Fan, Molecular dynamics investigation on the gasification of a coal particle in supercritical water, Int. J. Hydrog. Energy 45 (7) (2020) 4254-4267. [36] D.K. Hong, T. Si, X.X. Li, X. Guo, Reactive molecular dynamic simulations of the CO2 gasification effect on the oxy-fuel combustion of Zhundong coal char, Fuel Process. Technol. 199 (2020) 106305. [37] A.C.T. van Duin, S. Dasgupta, F. Lorant, W.A. Goddard, ReaxFF: A reactive force field for hydrocarbons, J. Phys. Chem. A 105 (41) (2001) 9396-9409. [38] K. Chenoweth, S. Cheung, A.C.T. van Duin, W.A. Goddard 3rd, E.M. Kober, Simulations on the thermal decomposition of a poly(dimethylsiloxane) polymer using the ReaxFF reactive force field, J. Am. Chem. Soc. 127 (19) (2005) 7192-7202. [39] M.A. Wood, A.C. van Duin, A. Strachan, Coupled thermal and electromagnetic induced decomposition in the molecular explosive αHMX; a reactive molecular dynamics study, J. Phys. Chem. A 118 (5) (2014) 885-895. [40] J.E. Basconi, M.R. Shirts, Effects of temperature control algorithms on transport properties and kinetics in molecular dynamics simulations, J. Chem. Theory Comput. 9 (7) (2013) 2887-2899. [41] L.L. Liu. Study on hydrothermal degradation law of dioxins in municipal waste incineration fly ash. Master of Engineering thesis, China University of Mining and Technology, Xuzhou, China, 2019. [42] D.L. Wei, C.F. Zhao, A. Khan, L. Sun, Y.F. Ji, Y.J. Ai, X.K. Wang, Sorption mechanism and dynamic behavior of graphene oxide as an effective adsorbent for the removal of chlorophenol based environmental-hormones: a DFT and MD simulation study, Chem. Eng. J. 375 (2019) 121964. [43] X.F. Huang, L. Wang, G. Fan, X.T. Bi, D.H. Yan, J.W.C. Wong, Y.Z. Zhu, Characterization and stabilization of incineration fly ash from a new multi-source hazardous waste co-disposal system: field-scale study on solidification and stabilization, Environ. Sci. Pollut. Res. Int. 31 (5) (2024) 7712-7727. [44] S. Chen, T.J. Fan, T. Ren, N. Zhang, L.J. Zhao, R.G. Zhong, G.H. Sun, High-throughput prediction of oral acute toxicity in Rat and Mouse of over 100, 000 polychlorinated persistent organic pollutants (PC-POPs) by interpretable data fusion-driven machine learning global models, J. Hazard. Mater. 480 (2024) 136295. [45] A.A. Sultan, B.I. Al-Kaisi, The testicular toxicity caused by 2, 3, 7, 8-tetrachloro-dibenzo-p-dioxin in rats, as well as the potential protective impact of resveratrol, Egypt. J. Vet. Sci. 56 (6) (2025) 1225-1237. |