[1] T.P. Hoar, J.H. Schulman, Transparent water-in-oil dispersions: the oleopathic hydro-micelle, Nature 152 (3847) (1943) 102-103. [2] D. Langevin, Microemulsions, Acc. Chem. Res. 21 (7) (1988) 255-260. [3] K. Giribabu, P. Ghosh, Adsorption of nonionic surfactants at fluid-fluid interfaces: Importance in the coalescence of bubbles and drops, Chem. Eng. Sci. 62 (11) (2007) 3057-3067. [4] L.P. Alves, K. da Silva Oliveira, J. Almeida da Paixao Santos, J.M. da Silva Leite, B.P. Rocha, P. de Lucena Nogueira, R.I. de Araujo Rego, J.A. Oshiro-Junior, B.P.G. de Lima Damasceno, A review on developments and prospects of anti-inflammatory in microemulsions, J. Drug Deliv. Sci. Technol. 60 (2020) 102008. [5] A. Mahboob, S. Kalam, M.S. Kamal, S.M.S. Hussain, T. Solling, EOR Perspective of microemulsions: a review, J. Petrol. Sci. Eng. 208 (2022) 109312. [6] G.Y. Zhang, J.J. Yu, Effect of commonly used EOR polymers on low concentration surfactant phase behaviors, Fuel 286 (2021) 119465. [7] F. Garavand, M. Jalai-Jivan, E. Assadpour, S.M. Jafari, Encapsulation of phenolic compounds within nano/microemulsion systems: A review, Food Chem. 364 (2021) 130376. [8] P.T.P. Aum, Y.K.P. Gurgel Aum, E. de Andrade Araujo, L. de Almeida Cavalcante, D. Nobre Nunes da Silva, C. Regis dos Santos Lucas, T.N. de Castro Dantas, Evaluation of oil-in-water microemulsion base ethoxylated surfactant under acid conditions, Fuel 290 (2021) 120045. [9] Y. Du, W.N. Wang, X.W. Li, J. Zhao, J.M. Ma, Y.P. Liu, G.Y. Lu, Preparation of NiO nanoparticles in microemulsion and its gas sensing performance, Mater. Lett. 68 (2012) 168-170. [10] M. Akbari, A.A. Mirzaei, M. Arsalanfar, Microemulsion based synthesis of promoted Fe-co/MgO nanocatalyst: influence of calcination atmosphere on the physicochemical properties, activity and light olefins selectivity for hydrogenation of carbon monoxide, Mater. Chem. Phys. 249 (2020) 123003. [11] Z.P. Zou, T. Zhang, L. Lv, W.X. Tang, G.Q. Zhang, R. Kumar Gupta, Y. Wang, S.W. Tang, Preparation adjacent Ni-Co bimetallic nano catalyst for dry reforming of methane, Fuel 343 (2023) 128013. [12] Z.P. Zou, Z.H. Zhen, W.X. Tang, T. Zhang, L. Lv, S.W. Tang, Microemulsion antisolvent extraction strategy to realize adjacent coprecipitation of copper acetate and zinc acetate for preparing highly efficient dual site catalysts, Ind. Eng. Chem. Res. 61 (41) (2022) 15134-15145. [13] Z.H. Zhen, W.X. Tang, W. Chu, T. Zhang, L. Lv, S.W. Tang, Microemulsion solventing-out co-precipitation strategy for fabricating highly active Cu-ZnO/Al2O3 dual site catalysts for reverse water gas shift, Catal. Sci. Technol. 10 (8) (2020) 2343-2352. [14] S. Tianimoghadam, A. Salabat, A microemulsion method for preparation of thiol-functionalized gold nanoparticles, Particuology 37 (2018) 33-36. [15] M. Shao, M.H. Chen, M. Fan, G.T. Luo, C. Jin, Z.J. Huang, Microemulsion system constructed with a new cyano-functionalized ionic liquid for the extraction of Pd(II) and preparation of palladium nanoparticles, Sep. Purif. Technol. 275 (2021) 119198. [16] K.L. Huang, L.G. Yin, S.Q. Liu, C.J. Li, Preparation and formation mechanism of Al2O3 nanoparticles by reverse microemulsion, Trans. Nonferrous Met. Soc. China 17 (3) (2007) 633-637. [17] R.F. Ye, M. Ni, Y.Y. Xu, H. Chen, S.Q. Li, Synthesis of Zn-based metal-organic frameworks in ionic liquid microemulsions at room temperature, RSC Adv. 8 (46) (2018) 26237-26242. [18] T. Kang, S. Qian, G.S. Smith, C. Do, W.T. Heller, Small-angle neutron scattering study of a dense microemulsion system formed with an ionic liquid, Soft Matter 13 (39) (2017) 7154-7160. [19] J. Peng, N.M. Cantillo, Y. Xiao, K.M. Nelms, L.S. Roberts, G. Goenaga, A. Imel, B.A. Barth, M. Dadmun, D.G. Hayes, T. Zawodzinski, Decoupling conductivity and solubility in electrolytes using microemulsions, J. Electrochem. Soc. 168 (8) (2021) 080502. [20] J. Kuang, J. Gao, S.X. Xie, Q.F. Lei, W.J. Fang, H.J. Xie, X.X. Lu, Phase behaviors and curcumin encapsulation performance of Gemini surfactant microemulsion, J. Mol. Liq. 315 (2020) 113786. [21] X.B. Chen, N. Wang, Y.H. Ma, T.C. Bai, Phase diagrams for the pseudoternary system of{hexane (1) + [hexadecyltrimethylammonium bromide (21) + butan-1-ol (22)] (2) + water (3)} at a temperature of 303.15 K, J. Chem. Eng. Data 59 (5) (2014) 1593-1602. [22] A.S. Koneva, E.A. Safonova, P.S. Kondrakhina, M.A. Vovk, A.A. Lezov, Y.S. Chernyshev, N.A. Smirnova, Effect of water content on structural and phase behavior of water-in-oil (n-decane) microemulsion system stabilized by mixed nonionic surfactants SPAN 80/TWEEN 80, Colloids Surf. A Physicochem. Eng. Aspects 518 (2017) 273-282. [23] J. Oshitani, S. Takashina, M. Yoshida, K. Gotoh, Phase behavior and size variation of Na-AOT-based W/O microemulsions by increasing NaOH concentration in the water pool, Adv. Powder Technol. 20 (6) (2009) 554-557. [24] A. Zdziennicka, The adsorption tendency of cetylpyridinium bromide at water-air interface and micelles formation in the presence of propanol, Colloids Surf. A Physicochem. Eng. Aspects 325 (1-2) (2008) 93-100. [25] J.L. Chai, X.N. Xue, Z.M. Zhang, X.Q. Li, S.C. Shang, J.J. Lu, Effects of isomeric alcohols and oils on the properties of the microemulsion systems formed by alkyl phenol poly(oxyethylene ether), J. Chem. Eng. Data 55 (11) (2010) 4912-4916. [26] J.L. Chai, Y.T. Wu, X.Q. Li, B. Yang, L.S. Chen, S.C. Shang, J.J. Lu, Phase behavior of the microemulsion systems containing alkyl polyglucoside and hexadecyl-trimethyl-ammonium bromide, J. Chem. Eng. Data 56 (1) (2011) 48-52. [27] W. Liu, J.L. Chai, L.S. Chen, L. Xu, M.L. Zhu, J.J. Lu, Effect of the composition of mixed oils on the phase behavior and solubilization ability of microemulsion systems, J. Chem. Eng. Data 57 (2) (2012) 469-474. [28] X.Q. Li, J.L. Chai, S.C. Shang, H.L. Li, J.J. Lu, B. Yang, Y.T. Wu, Phase behavior of alcohol-free microemulsion systems containing butyric acid as a cosurfactant, J. Chem. Eng. Data 55 (9) (2010) 3224-3228. [29] Y.T. Wu, J.L. Chai, X.Q. Li, B. Yang, S.C. Shang, J.J. Lu, Effect of alkane/water ratios on the phase behavior and the solubilization of microemulsion systems containing hexadecyltrimethylammonium bromide, J. Chem. Eng. Data 56 (7) (2011) 3089-3094. [30] A.C. Lam, R.S. Schechter, The theory of diffusion in microemulsion, J. Colloid Interface Sci. 120 (1) (1987) 56-63. [31] A.C. Lam, R.S. Schechter, A study of diffusion and electrical conduction in microemulsions, J. Colloid Interface Sci. 120 (1) (1987) 42-55. [32] Y.H. Ma, X.B. Chen, F. Wang, N. Wang, T.C. Bai, Phase diagrams for pseudo-ternary system of{IPM (1)+ [CTAB (21)+butan-1-ol (22)] (2)+water (3)} at temperature 303.15K, J. Mol. Liq. 209 (2015) 603-610. [33] P.D.I. Fletcher, B.H. Robinson, Dynamic processes in water-in-oil microemulsions, Ber. Der Bunsengesellschaft Fur Phys. Chem. 85 (10) (1981) 863-867. [34] Z.X. Chen, X.L. Cheng, H.S. Cui, P. Cheng, H.Y. Wang, Dissipative particle dynamics simulation of the phase behavior and microstructure of CTAB/octane/1-butanol/water microemulsion, Colloids Surf. A Physicochem. Eng. Aspects 301 (1-3) (2007) 437-443. [35] H.M.A.U. Rahman, S. Afzal, M.F. Nazar, D.A. Alvi, A.M. Khan, M.N. Asghar, Phase behavior of a TX-100/oleic acid/water based ternary system: a microstructure study, J. Mol. Liq. 230 (2017) 15-19. [36] K.L. Guan, L. Tao, R. Yang, H.N. Zhang, N.Z. Wang, H.Z. Wan, J. Cui, J. Zhang, H.B. Wang, H. Wang, Anti-corrosion for reversible zinc anode via a hydrophobic interface in aqueous zinc batteries, Adv. Energy Mater. 12 (9) (2022) 2103557. [37] M. Zargartalebi, N. Barati, R. Kharrat, Influences of hydrophilic and hydrophobic silica nanoparticles on anionic surfactant properties: Interfacial and adsorption behaviors, J. Petrol. Sci. Eng. 119 (2014) 36-43. [38] H.E. Liu, X.K. Zhang, C.Q. Ding, S. Chen, X.L. Qi, Phase behavior of sodium dodecyl sulfate-n-butanol-kerosene-water microemulsion system, Chin. J. Chem. Eng. 22 (6) (2014) 699-705. [39] L.L. Deng, M. Taxipalati, P. Sun, F. Que, H. Zhang, Phase behavior, microstructural transition, antimicrobial and antioxidant activities of a water-dilutable thymol microemulsion, Colloids Surf. B Biointerfaces 136 (2015) 859-866. [40] G. Zylyftari, J.W. Lee, J.F. Morris, Salt effects on thermodynamic and rheological properties of hydrate forming emulsions, Chem. Eng. Sci. 95 (2013) 148-160. [41] N. Li, S.H. Zhang, X.W. Li, L. Yu, L.Q. Zheng, Effect of polyethylene glycol (PEG-400) on the 1-butyl-3-methylimidazolium tetrafluoroborate-in-cyclohexane ionic liquid microemulsion, Colloid Polym. Sci. 287 (1) (2009) 103-108. [42] P. Golwala, S. Rathod, R. Patil, A. Joshi, D. Ray, V.K. Aswal, P. Bahadur, S. Tiwari, Effect of cosurfactant addition on phase behavior and microstructure of a water dilutable microemulsion, Colloids Surf. B Biointerfaces 186 (2020) 110736. [43] L. Djekic, M. Primorac, S. Filipic, D. Agbaba, Investigation of surfactant/cosurfactant synergism impact on ibuprofen solubilization capacity and drug release characteristics of nonionic microemulsions, Int. J. Pharm. 433 (1-2) (2012) 25-33. [44] P. Bauduin, D. Touraud, W. Kunz, M.P. Savelli, S. Pulvin, B.W. Ninham, The influence of structure and composition of a reverse SDS microemulsion on enzymatic activities and electrical conductivities, J. Colloid Interface Sci. 292 (1) (2005) 244-254. |