[1] Y.Z. Zhang, X. Chen, W.L. Wang, L.F. Yin, J.C. Crittenden, Electrocatalytic nitrate reduction to ammonia on defective Au1Cu (111) single-atom alloys, Appl. Catal. B Environ. 310(2022) 121346. [2] Y.R. Feng, X.C. Huang, Z.Y. Wu, H.T. Wang, K.C. Zuo, Q.L. Li, Polarity modulation enhances electrocatalytic reduction of nitrate by iron nanocatalysts, ACS EST Eng. 4(4) (2024) 928-937. [3] L. Perez-Urrestarazu, J. Lobillo-Eguíba, R. Fern andez-Ca nero, V.M. Fern ~ andezCabanas, Food safety concerns in urban aquaponic production: nitrate con- tents in leafy vegetables, Urban For. Urban Green. 44(2019) 126431. [4] J. Wang, Y.A. Wang, C. Cai, Y.S. Liu, D.J. Wu, M.Y. Wang, M.H. Li, X.B. Wei, M.H. Shao, M. Gu, Cu-doped iron oxide for the efficient electrocatalytic nitrate reduction reaction, Nano Lett. 23(5) (2023) 1897-1903. [5] Y. Jin, L.P. Sun, Y.C. Wang, L.H. Huo, H. Zhao, Enhanced electrocatalytic nitrate reduction and energy conversion through Zn-Nitrate battery by Cu3P@ Co(OH)2/CF heterostructure catalyst, Int. J. Hydrogen Energy 71(2024) 820-830. [6] S.Y. Yuan, Y.H. Xue, R.E. Ma, Q. Ma, Y.Y. Chen, J.W. Fan, Advances in iron-based electrocatalysts for nitrate reduction, Sci. Total Environ. 866(2023) 161444. [7] X. Ma, J.P. Zhong, R.Y. Wang, D.X. Li, K. Li, L.J. Luo, C.H. Li, Zeolitic imidazolate framework derived Fe catalyst electrocatalytic-driven atomic hydrogen for efficient reduction of nitrate to N2, J. Hazard. Mater. 471(2024) 134354. [8] M. Duca, N. Sacre, A. Wang, S. Garbarino, D. Guay, Enhanced electrocatalytic nitrate reduction by preferentially-oriented (100) PtRh and PtIr alloys: the hidden treasures of the ‘miscibility gap’, Appl. Catal. B Environ. 221(2018) 86-96. [9] L. Shi, Y.M. Li, S.X. He, Y.N. Liu, X.Y. Tang, L. Ao, X.S. Lv, W.Y. Fu, G.M. Jiang, Efficient electrocatalytic nitrate reduction on molecular catalyst with electron-deficient single-atom Cud+ sites, Chem. Eng. J. 495(2024) 153427. [10] J. Martínez, A. Ortiz, I. Ortiz, State-of-the-art and perspectives of the catalytic and electrocatalytic reduction of aqueous nitrates, Appl. Catal. B Environ. 207(2017) 42-59. [11] Q.N. Song, M. Li, J.C. Li, S. Zhang, L. Yang, X.Y. Chen, F.B. Meng, X. Liu, Simultaneous electrocatalytic removal of inorganic nitrogen compounds in groundwater: modeling and mechanistic studies, Chem. Eng. J. 430(2022) 133152. [12] X. Ma, J.P. Zhong, W.M. Huang, R.Y. Wang, S.H. Li, Z.Y. Zhou, C.H. Li, Tuning the d-band centers of bimetallic FeNi catalysts derived from layered double hydroxides for selective electrocatalytic reduction of nitrates, Chem. Eng. J. 474(2023) 145721. [13] X. Yan, X. Fang, S.S. Lu, H.P. Luo, L. Tan, Y. Liu, H. Chen, F. Jiang, Electrocatalytic reduction of nitrate by copper/iron oxides supported on nitrogen doped carbon spheres, J. Hazard. Mater. Adv. 10(2023) 100313. [14] J. Hu, C. Tang, Z.H. Bi, S.X. Zhou, Q.Q. Kong, S.S. Gao, X.J. Liu, X. Zhao, G.Z. Hu, Self-supported iron-doped cobalt-copper oxide heterostructures for efficient electrocatalytic denitrification, J. Colloid Interface Sci. 675(2024) 313-325. [15] X.H. Wu, M. Nazemi, S. Gupta, A. Chismar, K. Hong, H. Jacobs, W.Q. Zhang, K. Rigby, T. Hedtke, Q.X. Wang, E. Stavitski, M.S. Wong, C. Muhich, J.H. Kim, Contrasting capability of single atom palladium for thermocatalytic versus electrocatalytic nitrate reduction reaction, ACS Catal. 13(10) (2023) 6804-6812. [16] X.D. Wang, M.Q. Zhu, G.S. Zeng, X. Liu, C. Fang, C.H. Li, A three-dimensional Cu nanobelt cathode for highly efficient electrocatalytic nitrate reduction, Nanoscale 12(17) (2020) 9385-9391. [17] L.L. Chen, Y.H. Hao, J.Y. Chu, S. Liu, F.H. Bai, W.H. Luo, Electrocatalytic nitrate reduction to ammonia: a perspective on Fe/Cu-containing catalysts, Chin. J. Catal. 58(2024) 25-36. [18] Z.X. Wang, S.Y. Xia, X.F. Deng, G. Baryshnikov, A. Kuklin, H. Ågren, H.B. Zhang, Platinum group nanoparticles doped BCN matrix: efficient catalysts for the electrocatalytic reduction of nitrate to ammonia, J. Colloid Interface Sci. 664(2024) 84-95. [19] Y. Su, N. Chen, H.L. Ren, L.L. Guo, Z. Li, X.M. Wang, Preparation and properties of indium ion modified graphite felt composite electrode, Front. Chem. 10(2022) 899287. [20] S.H. Huang, Y. Wang, S.Y. Qiu, J.Q. Wan, Y.W. Ma, Z.C. Yan, Q.M. Xie, In-situ fabrication from MOFs derived MnxCo3-x@C modified graphite felt cathode for efficient electro-Fenton degradation of ciprofloxacin, Appl. Surf. Sci. 586(2022) 152804. [21] S.Q. Yang, X.L. Wang, Z.M. Song, C.C. Liu, Z.Y. Li, J.Y. Wang, L.Z. Song, Efficient electrocatalytic nitrate reduction in neutral medium by Cu/CoP/NF composite cathode coupled with Ir-Ru/Ti anode, Chemosphere 307(Pt 4) (2022) 136132. [22] J. Zhou, S.S. Gao, G.Z. Hu, Recent progress and perspectives on transition metal-based electrocatalysts for efficient nitrate reduction, Energy Fuels 38(8) (2024) 6701-6722. [23] J.L. Fan, L.K. Arrazolo, J.X. Du, H.M. Xu, S.Y. Fang, Y. Liu, Z.B. Wu, J.H. Kim, X.H. Wu, Effects of ionic interferents on electrocatalytic nitrate reduction: mechanistic insight, Environ. Sci. Technol. 58(29) (2024) 12823-12845. [24] M.Y. Zheng, Y.C. Wan, L.P. Yang, S. Ao, W.Y. Fu, Z.J. Zhang, Z.H. Huang, T. Ling, F.Y. Kang, R.T. Lv, In situ construction of Cu(I)-Cu(II) pairs for efficient electrocatalytic nitrate reduction reaction to ammonia, J. Energy Chem. 100(2025) 106-113. [25] S. Garcia-Segura, M. Lanzarini-Lopes, K. Hristovski, P. Westerhoff, Electrocatalytic reduction of nitrate: fundamentals to full-scale water treatment applications, Appl. Catal. B Environ. 236(2018) 546-568. [26] J.H. Wang, Z. Zhang, S.Q. Ding, Cu supported on the graphene oxide modified graphite felt electrode for highly efficient nitrate electroreduction, J. Environ. Chem. Eng. 10(3) (2022) 108092. [27] A.L. Pang, A. Arsad, M. Ahmadipour, Synthesis and factor affecting on the conductivity of polypyrrole: a short review, Polym. Adv. Technol. 32(4) (2021) 1428-1454. [28] Z. Li, L.L. Wang, Y.M. Cai, J.R. Zhang, W.L. Zhu, Electrochemically reconstructed copper-polypyrrole nanofiber network for remediating nitrate-containing water at neutral pH, J. Hazard. Mater. 440(2022) 129828. [29] P. Pattanayak, N. Pramanik, P. Kumar, P.P. Kundu, Fabrication of cost-effective non-noble metal supported on conducting polymer composite such as copper/polypyrrole graphene oxide (Cu2O/PPyeGO) as an anode catalyst for methanol oxidation in DMFC, Int. J. Hydrogen Energy 43(25) (2018) 11505-11519. [30] Z.G. Yin, W.B. Fan, Y.H. Ding, J.X. Li, L.H. Guan, Q.D. Zheng, Shell structure control of PPy-modified CuO composite nanoleaves for lithium batteries with improved cyclic performance, ACS Sustainable Chem. Eng. 3(3) (2015) 507-517. [31] Z.H. Liu, G. Sun, Z.J. Chen, Y. Ma, K. Qiu, M. Li, B.J. Ni, Anchoring Cu-N active sites on functionalized polyacrylonitrile fibers for highly selective H2S/CO2 separation, J. Hazard. Mater. 450(2023) 131084. [32] Z.L. Li, L.B. Deng, I.A. Kinloch, R.J. Young, Raman spectroscopy of carbon materials and their composites: Graphene, nanotubes and fibres, Prog. Mater. Sci. 135(2023) 101089. [33] Y. Lei, T.L. Li, L. Yang, Y.Y. Peng, W. Xiong, D.R. Liu, Highly efficient electrocatalytic treatment of high-concentration 4-chlorophenol wastewater on PdCu/PPy/NF composite cathode, Appl. Surf. Sci. 654(2024) 159479. [34] Q. Li, Q. Dong, T.Y. Zhang, Z.C. Xue, J. Li, Z.N. Wang, H. Sun, Performance of room-temperature activated tubular polypyrrole modified graphite felt composite electrode in vanadium redox flow battery, Electrochim. Acta 409(2022) 139970. [35] W. Li, C.G. Min, F. Tan, Z.P. Li, B.S. Zhang, R. Si, M.L. Xu, W.P. Liu, L.X. Zhou, Q. M. Wei, Y.Z. Zhang, X.K. Yang, Bottom-up construction of active sites in a CuN4-C catalyst for highly efficient oxygen reduction reaction, ACS Nano 13(3) (2019) 3177-3187. [36] Z. Li, Y.S. Wu, H.Q. Wang, Z.B. Wu, X.H. Wu, High-efficiency electrocatalytic reduction of N2O with single-atom Cu supported on nitrogen-doped carbon, Environ. Sci. Technol. 58(20) (2024) 8976-8987. [37] R. Hu, Y. Cui, X.J. Chen, C.X. Xu, An efficient Cu-based catalyst prepared by the one-step method of phytic acid assisted glucose for acetylene hydration, Mol. Catal. 560(2024) 114147. [38] L.H. Zhang, Y.T. Jia, J.Y. Zhan, G.M. Liu, G.H. Liu, F. Li, F.S. Yu, Dopant-induced electronic states regulation boosting electroreduction of dilute nitrate to ammonium, Angew. Chem. Int. Ed 62(22) (2023) e202303483. [39] Z.M. Jia, T. Feng, M.L. Ma, Z.Y. Li, L. Tang, Emerging advances in Cu-based electrocatalysts for electrochemical nitrate reduction (NO3RR), Surf. Interfaces 48(2024) 104294. [40] X.P. Li, J.J. Yang, X.L. Shi, Z.R. Sun, N, P Co-doped graphite felt cathode for efficient removal of ciprofloxacin in an ascorbic acid-coupled electro-Fenton process: simultaneously enhancing H2O2 generation and Fe3+/Fe2+ cycling, Environ. Res. 266(2025) 120577. [41] A.M. Demeku, C.H. Guo, D.M. Kabtamu, Z.J. Huang, G.C. Chen, A.W. Bayeh, C.H. Wang, Enhanced electrochemical performance of copper-doped cobalt oxide nanowire-modified graphite felt as positive electrode material for vanadium redox flow batteries, Chem. Eng. J. 505(2025) 159170. [42] M.C. Zhang, M.Y. Liu, M.X. Yang, X.X. Liu, S.Y. Shen, J.S. Wu, W.B. Pei, Coppercobalt bimetallic conductive metaleorganic frameworks as bifunctional oxygen electrocatalyst in alkaline and neutral media, J. Solid State Chem. 325(2023) 124133. [43] S.Z. Liang, X. Teng, H. Xu, L.S. Chen, J.L. Shi, H* species regulation by MnCo(OH)2 for efficient nitrate electro-reduction in neutral solution, Angew. Chem. Int. Ed 63(11) (2024) e202400206. [44] S.I. Perez Bakovic, P. Acharya, M. Watkins, H. Thornton, S.X. Hou, L.F. Greenlee, Electrochemically active surface area controls HER activity for FexNi100x films in alkaline electrolyte, J. Catal. 394(2021) 104-112. [45] E. Tabesh, H.R. Salimijazi, M. Kharaziha, M. Mahmoudi, M. Hejazi, Development of an in situ chitosan-copper nanoparticle coating by electrophoretic deposition, Surf. Coat. Technol. 364(2019) 239-247. [46] J. Wang, J. Feng, T.O. Soyol-Erdene, Z. Wei, W.W. Tang, Electrodeposited NiCoP on nickel foam as a self-supported cathode for highly selective electrochemical reduction of nitrate to ammonia, Sep. Purif. Technol. 320(2023) 124155. [47] X.R. Hu, M.M. Zhang, C. Lai, M. Cheng, F.H. Xu, D.S. Ma, L. Li, H.C. Yan, H. Sun, X. Fan, B.T. Wang, Metal-organic frameworks derived low-cost Cu-doped Co3O4 for efficient reduction of ultra-low nitrate concentrations to ammonia, Chem. Eng. J. 493(2024) 152543. [48] J. Sun, D. Alam, R. Daiyan, H. Masood, T.Q. Zhang, R.W. Zhou, P.J. Cullen, E.C. Lovell, A. Jalili, R. Amal, A hybrid plasma electrocatalytic process for sustainable ammonia production, Energy Environ. Sci. 14(2) (2021) 865-872. [49] S. Meng, Y. Ling, M.Y. Yang, X.G. Zhao, A.I. Osman, A.H. Al-Muhtaseb, D.W. Rooney, P.S. Yap, Recent research progress of electrocatalytic reduction technology for nitrate wastewater: a review, J. Environ. Chem. Eng. 11(2) (2023) 109418. [50] Y.C. Feng, T. Su, Y.H. Gong, H.B. Yu, W.C. Qin, M.X. Huo, Enhanced electrocatalytic reduction of nitrate over a ternary alloy catalyst of CuPdFe: structure, performance, and mechanism, J. Environ. Chem. Eng. 12(3) (2024) 112700. [51] L. He, T.J. Zeng, F.B. Yao, Y. Zhong, C. Tan, Z.J. Pi, K.J. Hou, S.J. Chen, X.M. Li, Q. Yang, Electrocatalytic reduction of nitrate by carbon encapsulated Cu-Fe electroactive nanocatalysts on Ni foam, J. Colloid Interface Sci. 634(2023) 440-449. [52] C. Wang, Z.F. Cao, H.T. Huang, H. Liu, S. Wang, Electrocatalytic reduction of nitrate via Co3O4/Ti cathode prepared by electrodeposition paired with IrO2- RuO2 anode, Front. Chem. 10(2022) 900962. [53] C.Y. Li, J. Yang, C.B. Zhang, C. Wang, C. Lyu, K. Fan, Study on catalytic performance in CO2 hydrogenation to methanol over AueCu/C3N4 catalysts, Catalysts 14(8) (2024) 470. [54] Z.R. Shen, J.B. Yan, M. Wang, L.D. Xing, B.J. Huang, H.Y. Zhou, W.B. Li, L.S. Chen, J.L. Shi, Cu/Cu+ synergetic effect in Cu2O/Cu/CF electrocatalysts for efficient nitrate reduction to ammonia, ACS Sustainable Chem. Eng. 11(25) (2023) 9433-9441. [55] M. Liu, Z.H. Lu, L.H. Yang, R.M. Gao, X.Y. Zhang, Y.J. Wang, Y.H. Wang, Co-N bond promotes the H* pathway for the electrocatalytic reduction of nitrate (NO3RR) to ammonia, J. Environ. Chem. Eng. 11(3) (2023) 109718. [56] Y. Li, J.X. Ma, T. David Waite, M.R. Hoffmann, Z.W. Wang, Development of a mechanically flexible 2D-MXene membrane cathode for selective electrochemical reduction of nitrate to N2: mechanisms and implications, Environ. Sci. Technol. 55(15) (2021) 10695-10703. [57] Y. Shi, Y.M. Li, R.J. Li, X.G. Zhao, Y.L. Yu, M. Yang, In-situ reconstructed Cu/ Cu2O heterogeneous nanorods with oxygen vacancies for enhanced electrocatalytic nitrate reduction to ammonia, Chem. Eng. J. 479(2024) 147574. |