[1] P.J. Morris, Wetter is better for peat carbon, Nat. Clim. Chang. 11 (7) (2021) 561-562. [2] Y. Yang, B. Chen, PSE in China: retrospect and prospects, Chem. Ind. Eng. Prog. 41 (2022) 3991-4008. (in Chinese). [3] Wu Y, Molecular management for refining operations, Ph.D thesis,University of Manchester, 2010. [4] D. Guan, L.Z. Zhang, Initial guess estimation and fast solving of petroleum complex molecular reconstruction model, AIChE. J. 68 (10) (2022) e17782. [5] H.C. Gu, J.W. Li, P. Mu, Q.X. Zhu, Improving the operational efficiency of ethylene cracking integrated with refining by molecular management, Ind. Eng. Chem. Res. 59 (29) (2020) 13160-13174. [6] E.T.C. Vogt, B.M. Weckhuysen, The refinery of the future, Nature 629 (8011) (2024) 295-306. [7] V. Mann, R. Gani, V. Venkatasubramanian, Group contribution-based property modeling for chemical product design: a perspective in the AI era, Fluid Phase Equilib. 568 (2023) 113734. [8] Y.X. Wei, L.Y. Shan, T. Qiu, D.N. Lu, Z. Liu, Machine learning-assisted retrosynthesis planning: current status and future prospects, Chin. J. Chem. Eng. 77 (2025) 273-292. [9] J. Marrero, R. Gani, Group-contribution based estimation of pure component properties, Fluid Phase Equilib. 183 (2001) 183-208. [10] A.S. Alshehri, A.K. Tula, F.Q. You, R. Gani, Next generation pure component property estimation models: With and without machine learning techniques, AIChE. J. 68 (6) (2022) e17469. [11] R. Gani, Group contribution-based property estimation methods: advances and perspectives, Curr. Opin. Chem. Eng. 23 (2019) 184-196. [12] H. Renon, Vapor-liquid equilibria using UNIFAC. A group contribution method, Fluid Phase Equilib. 1 (4) (1977) 317. [13] D.S. Abrams, J.M. Prausnitz, Statistical thermodynamics of liquid mixtures: a new expression for the excess Gibbs energy of partly or completely miscible systems, AIChE. J. 21 (1) (1975) 116-128. [14] A.R.N. Aouichaoui, F. Fan, J. Abildskov, G. Sin, Application of interpretable group-embedded graph neural networks for pure compound properties, Comput. Chem. Eng. 176 (2023) 108291. [15] J. Burger, V. Papaioannou, S. Gopinath, G. Jackson, A. Galindo, C.S. Adjiman, A hierarchical method to integrated solvent and process design of physical CO2 absorption using the SAFT-γ Mie approach, AIChE. J. 61 (10) (2015) 3249-3269. [16] T. Zhou, Z. Song, X. Zhang, R. Gani, K. Sundmacher, Optimal solvent design for extractive distillation processes: a multiobjective optimization-based hierarchical framework, Ind. Eng. Chem. Res. 58 (15) (2019) 5777-5786. [17] X.Y. Cao, M. Gong, A. Tula, X. Chen, R. Gani, V. Venkatasubramanian, An improved machine learning model for pure component property estimation, Engineering 39 (2024) 61-73. [18] A.R.N. Aouichaoui, F. Fan, S.S. Mansouri, J. Abildskov, G. Sin, Combining Group-contribution concept and graph neural networks toward interpretable molecular property models, J. Chem. Inf. Model. 63 (3) (2023) 725-744. [19] R. Gani, P.M. Harper, M. Hostrup, Automatic creation of missing groups through connectivity index for pure-component property prediction, Ind. Eng. Chem. Res. 44 (18) (2005) 7262-7269. [20] D.P. Visco, R.S. Pophale, M.D. Rintoul, J.L. Faulon, Developing a methodology for an inverse quantitative structure-activity relationship using the signature molecular descriptor, J. Mol. Graph. Model. 20 (6) (2002) 429-438. [21] D. Rogers, M. Hahn, Extended-connectivity fingerprints, J. Chem. Inf. Model. 50 (5) (2010) 742-754. [22] M.R. Dobbelaere, Y. Ureel, F.H. Vermeire, L. Tomme, C.V. Stevens, K.M. Van Geem, Machine learning for physicochemical property prediction of complex hydrocarbon mixtures, Ind. Eng. Chem. Res. 61 (24) (2022) 8581-8594. [23] W.M. Mi, H.J. Chen, D.A. Zhu, T. Zhang, F. Qian, Melting point prediction of organic molecules by deciphering the chemical structure into a natural language, Chem. Commun. 57 (21) (2021) 2633-2636. [24] Z.N. Zeng, Y. Yao, Z.Y. Liu, M.S. Sun, A deep-learning system bridging molecule structure and biomedical text with comprehension comparable to human professionals, Nat. Commun. 13 (1) (2022) 862. [25] G.B. Goh, N.O. Hodas, C. Siegel, A. Vishnu, SMILES2Vec: an interpretable general-purpose deep neural network for predicting chemical properties, 2019, https://doi.org/10.48550/arXiv.1712.02034. [26] V. Mann, K. Brito, R. Gani, V. Venkatasubramanian, Hybrid, interpretable machine learning for thermodynamic property estimation using Grammar2vec for molecular representation, Fluid Phase Equilib. 561 (2022) 113531. [27] O. Wieder, S. Kohlbacher, M. Kuenemann, A. Garon, P. Ducrot, T. Seidel, T. Langer, A compact review of molecular property prediction with graph neural networks, Drug Discov. Today Technol. 37 (2020) 1-12. [28] B.Z. Dou, Z.L. Zhu, E. Merkurjev, L. Ke, L. Chen, J. Jiang, Y.Y. Zhu, J. Liu, B.G. Zhang, G.W. Wei, Machine learning methods for small data challenges in molecular science, Chem. Rev. 123 (13) (2023) 8736-8780. [29] S. Ishida, T. Miyazaki, Y. Sugaya, S. Omachi, Graph neural networks with multiple feature extraction paths for chemical property estimation, Molecules 26 (11) (2021) 3125. [30] X. Zang, X.B. Zhao, B.Z. Tang, Hierarchical molecular graph self-supervised learning for property prediction, Commun. Chem. 6 (1) (2023) 34. [31] S. Jain, B.C. Wallace, Attention is not explanation, ArXiv Prepr. ArXiv1902.10186 (2019). [32] S. Wiegreffe, Y. Pinter, Attention is not not explanation, ArXiv Prepr. ArXiv1908.04626 (2019). [33] B. Rozemberczki, L. Watson, P. Bayer, H.T. Yang, O. Kiss, S. Nilsson, R. Sarkar, The shapley value in machine learning,In:Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence. Vienna, Austria., 2022. [34] A. Yang, S.R. Sun, Y. Su, Z.Y. Kong, J.Z. Ren, W.F. Shen, Insight to the prediction of CO2 solubility in ionic liquids based on the interpretable machine learning model, Chem. Eng. Sci. 297 (2024) 120266. [35] Q. Pan, X.L. Fan, J. Li, Automatic creation of molecular substructures for accurate estimation of pure component properties using connectivity matrices, Chem. Eng. Sci. 265 (2023) 118214. [36] K.X. Bi, T. Qiu, An intelligent SVM modeling process for crude oil properties prediction based on a hybrid GA-PSO method, Chin. J. Chem. Eng. 27 (8) (2019) 1888-1894. [37] G.S.K. Ranjan, A. Kumar Verma, S. Radhika, K-Nearest neighbors and grid search CV based real time fault monitoring system for industries, In:2019 IEEE 5th International Conference for Convergence in Technology (I2CT). Bombay, India. IEEE, 2019. [38] Y. Wang, P.X. Wang, K. Tansey, J.M. Liu, B. Delaney, W.T. Quan, An interpretable approach combining Shapley additive explanations and LightGBM based on data augmentation for improving wheat yield estimates, Comput. Electron. Agric. 229 (2025) 109758. [39] Y. Shi, W.M. Zhong, X. Peng, M.L. Yang, W. Du, Interpretable reconstruction of naphtha components using property-based extreme gradient boosting and compositional-weighted Shapley additive explanation values, Chem. Eng. Sci. 284 (2024) 119462. [40] G. Landrum, Rdkit documentation, Release 1 (2013) 4. [41] M. Greenacre, P.J.F. Groenen, T. Hastie, A.I. D’Enza, A. Markos, E. Tuzhilina, Principal component analysis, Nat. Rev. Meth. Primers 2 (2022) 100. [42] Y.S. Mu, X.D. Liu, L.D. Wang, A Pearson’s correlation coefficient based decision tree and its parallel implementation, Inf. Sci. 435 (2018) 40-58. [43] S.J. Rigatti, Random forest, J. Insur. Med. 47 (1)31–39. [44] M. Schonlau, R.Y. Zou, The random forest algorithm for statistical learning, Stata J. Promot. Commun. Stat. Stata 20 (1) (2020) 3-29. [45] F. Jin, Y. Guo, Y. Zhang, X. Ma, B. Liu, J. Jiao, X. Yin, H. Xu, J. Gong, K. Wen, A new gas pipeline network simulation method based on BHC-PINN, Nat. Gas Ind. 45 (2025) 164-174. [46] Z.Q. Wang, D.K. He, H.T. Nie, Operational optimization of copper flotation process based on the weighted Gaussian process regression and index-oriented adaptive differential evolution algorithm, Chin. J. Chem. Eng. 66 (2024) 167-179. [47] A. Gulli, S. Pal, Deep Learning with Keras, Packt Publishing Ltd., 2017. [48] B. Pang, E. Nijkamp, Y.N. Wu, Deep learning with TensorFlow: a review, J. Educ. Behav. Stat. 45 (2) (2020) 227-248. [49] X. Yin, K. Wen, Y. Wu, X. Han, Y. Mukhtar, J. Gong, A machine learning-based surrogate model for the rapid control of piping flow: Application to a natural gas flowmeter calibration system, J. Nat. Gas Sci. Eng. 98 (2022) 104384. [50] X. Yin, K. Wen, W.H. Huang, Y.W. Luo, Y. Ding, J. Gong, J.F. Gao, B.Y. Hong, A high-accuracy online transient simulation framework of natural gas pipeline network by integrating physics-based and data-driven methods, Appl. Energy 333 (2023) 120615. [51] K. Wen, J.F. Jiao, K. Zhao, X. Yin, Y. Liu, J. Gong, C.C. Li, B.Y. Hong, Rapid transient operation control method of natural gas pipeline networks based on user demand prediction, Energy 264 (2023) 126093. [52] O. Kramer, Scikit-learn. Machine Learning for Evolution Strategies. Springer International Publishing, (2016), pp 5-53. [53] M. Sundararajan, A. Najmi, The many shapley values for model explanation, International In:Conference on Machine Learning, online, 2019. [54] H.G. Cai, Y. Yang, Y.Q. Tang, Z.Y. Sun, W.S. Zhang, Shapley value-based class activation mapping for improved explainability in neural networks, Vis. Comput. (2025) https://doi.org/10.1007/s00371-025-03803-1. [55] G. Modla, Energy saving methods for the separation of a minimum boiling point azeotrope using an intermediate entrainer, Energy 50 (2013) 103-109. [56] D.B. Robinson, D.Y. Peng, S.Y. Chung, The development of the Peng - Robinson equation and its application to phase equilibrium in a system containing methanol, Fluid Phase Equilib. 24 (1-2) (1985) 25-41. [57] L. Constantinou, R. Gani, J.P. O’Connell, Estimation of the acentric factor and the liquid molar volume at 298 K using a new group contribution method, Fluid Phase Equilib. 103 (1) (1995) 11-22. [58] Y.C. Chen, A tutorial on kernel density estimation and recent advances, biostat epidemiol 1 (1) (2017) 161-187. [59] C.E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J. 27 (3) (1948) 379-423. [60] L. Prechelt, Automatic early stopping using cross validation: quantifying the criteria, Neural Netw. 11 (4) (1998) 761-767. [61] A.S. Alshehri, A.K. Tula, F. You, R. Gani, Corrections to “Next generation pure component property estimation models: With and without machine learning techniques,” AIChE J. 69 (2023) e18086. [62] Z.H. Zhou, Machine Learning. Springer Singapore, 2021. [63] W.C. Edmister, Thermodynamic properties of hydrocarbons, Ind. Eng. Chem. 30 (3) (1938) 352-358. |