[1] Y.W. Ren, X.Y. Cheng, W.Q. Li, Q. Wang, F.Y. Zeng, Effect of tempering temperature on stress corrosion resistance of a low alloy high strength steel with high vanadium content, Mater. Today Commun. 39 (2024) 108730. [2] G.W. Yang, X.J. Sun, Z.D. Li, X.X. Li, Q.L. Yong, Effects of vanadium on the microstructure and mechanical properties of a high strength low alloy martensite steel, Mater. Des. 50 (2013) 102-107. [3] J. Wen, H.Y. Sun, T. Jiang, B.J. Chen, F.F. Li, M.X. Liu, Comparison of the interface reaction behaviors of CaO-V2O5 and MnO2-V2O5 solid-state systems based on the diffusion couple method, Int. J. Miner. Metall. Mater. 30 (5) (2023) 834-843. [4] B.J. Chen, T. Jiang, J. Wen, G.D. Yang, T.X. Yu, F.X. Zhu, P. Hu, High-chromium vanadium-titanium magnetite all-pellet integrated burden optimization and softening-melting behavior based on flux pellets, Int. J. Miner. Metall. Mater. 31 (3) (2024) 498-507. [5] D.V. Domov, I.I. Frantov, A.N. Seregin, A.N. Bortsov, A.A. Fofanov, O.O. Tsyba, N.V. Vlasyuk, I.N. Surikov, I.P. Savrasov, M.S. Vostrov, Effect of vanadium on the mechanical and service properties of weldable reinforcement steels in strength classes A500C and A600C, Metallurgist 59 (9) (2016) 941-947. [6] Y. Tomita, Development of fracture toughness of ultrahigh strength, medium carbon, low alloy steels for aerospace applications, Int. Mater. Rev. 45 (1) (2000) 27-37. [7] N. Jeeva, K. Thirunavukkarasu, J.R. Xavier, Influence of multifunctional graphene oxide and silanized vanadium nitride in polyurethane coatings for the protection of aluminium alloy in aerospace industries, Diam. Relat. Mater. 142 (2024) 110792. [8] R.K. Gupta, V. Anil Kumar, P. Ramkumar, U.V. Gururaja, Development of large-sized titanium alloy Ti6Al4V and nickel-based superalloy Inconel-718 forgings for reusable launch vehicle-technology demonstrator flight, Curr. Sci. 114 (1) (2018) 131-136. [9] Z.Y. Lu, J.H. He, M.C. Song, Y. Zhang, F.Y. Wu, J.G. Zheng, L.T. Zhang, L.X. Chen, Bullet-like vanadium-based MOFs as a highly active catalyst for promoting the hydrogen storage property in MgH2, Int. J. Miner. Metall. Mater. 30 (1) (2023) 44-53. [10] J. Wang, Y.F. Yuan, X.H. Rao, M.A. Yang, D.D. Wang, A.L. Zhang, Y. Chen, Z.L. Li, H.L. Zhao, Realizing high-performance Na3V2(PO4)2O2F cathode for sodium-ion batteries via Nb-doping, Int. J. Miner. Metall. Mater. 30 (10) (2023) 1859-1867. [11] S. Greiner, M.H. Anjass, M. Fichtner, C. Streb, Solid-state-stabilization of molecular vanadium oxides for reversible electrochemical charge storage, Inorg. Chem. Front. 7 (1) (2020) 134-139. [12] X.J. Peng, Q. Li, K. Wang, Dynamic compensation of vanadium self powered neutron detectors based on Luenberger form filter, Prog. Nucl. Energy 78 (2015) 190-195. [13] M.S. Barough, B.J. Patil, V.N. Bhoraskar, S.D. Dhole, Measurement of cross section of (n, γ) reaction for, iodine, sodium and vanadium in the energy range 1 keV to 4 MeV using accelerator based neutron source, Ann. Nucl. Energy 59 (2013) 25-30. [14] X. Wu, L. Cai, X.J. Zhang, T.Y. Wu, J.Q. Jiang, Study of neutron sensitivity for vanadium self-powered neutron detector in nuclear reactors, AIP Adv. 13 (12) (2023) 125015. [15] J. Wen, T. Jiang, Y.Z. Xu, J. Cao, X.X. Xue, Efficient extraction and separation of vanadium and chromium in high chromium vanadium slag by sodium salt roasting-(NH4)2SO4 leaching, J. Ind. Eng. Chem. 71 (2019) 327-335. [16] H.Y. Li, H.X. Fang, K. Wang, W. Zhou, Z. Yang, X.M. Yan, W.S. Ge, Q.W. Li, B. Xie, Asynchronous extraction of vanadium and chromium from vanadium slag by stepwise sodium roasting-water leaching, Hydrometallurgy 156 (2015) 124-135. [17] S.H. Zhang, G.H. Li, R.D. Xiao, J. Luo, L.Y. Yi, M.J. Rao, Extraction of vanadium from low-vanadium grade magnetite concentrate pellets with sodium salt, J. Mater. Res. Technol. 15 (2021) 5712-5722. [18] T.J. Chen, Y.M. Zhang, S.X. Song, Improved extraction of vanadium from a Chinese vanadium-bearing stone coal using a modified roast-leach process, Asia Pac. J. Chem. Eng. 5 (5) (2010) 778-784. [19] H.Y. Li, C.J. Wang, M.M. Lin, Y. Guo, B. Xie, Green one-step roasting method for efficient extraction of vanadium and chromium from vanadium-chromium slag, Powder Technol. 360 (2020) 503-508. [20] H.B. Trinh, S. Kim, J. Lee, S. Oh, Efficient recovery of vanadium and titanium from domestic titanomagnetite concentrate using molten salt roasting and water leaching, Materials (Basel) 16 (21) (2023) 6918. [21] M.Y. Wang, X.W. Wang, J.F. Shen, R.N. Wu, Extraction of vanadium from stone coal by modified salt-roasting process, J. Cent. South Univ. Technol. 18 (6) (2011) 1940-1944. [22] C.Q. Li, T. Jiang, J. Wen, T.X. Yu, F.F. Li, Review of leaching, separation and recovery of vanadium from roasted products of vanadium slag, Hydrometallurgy 226 (2024) 106313. [23] P. Xiong, Y.M. Zhang, S.X. Bao, J. Huang, Precipitation of vanadium using ammonium salt in alkaline and acidic media and the effect of sodium and phosphorus, Hydrometallurgy 180 (2018) 113-120. [24] Z.H. Wang, L. Chen, Z.F. Qin, H.Y. Yang, X.D. Guo, B. Liang, D.M. Luo, Tuning the nucleation rates for high-efficiency hydrolysis of sodium vanadate solution, Ind. Eng. Chem. Res. 62 (28) (2023) 11128-11139. [25] C.S. Rout, R. Khare, R.V. Kashid, D.S. Joag, M.A. More, N.A. Lanzillo, M. Washington, S.K. Nayak, D.J. Late, Metallic few-layer flowerlike VS2 nanosheets as field emitters, Eur. J. Inorg. Chem. 2014 (31) (2014) 5331-5336. [26] Y. Zheng, J.L. Chen, S.Z. Chen, F. Chen, S. Wang, Y.F. Guo, H. Li, F.C. Xu, J.L. Zhang, L.Z. Yang, Effect of calcification roasting process on vanadium oxidation and extraction from vanadium titanomagnetite pellets via sulfuric acid Leaching: Mechanism and enhancement, Sep. Purif. Technol. 354 (2025) 128859. [27] J. Wen, T. Jiang, X.L. Zheng, J.P. Wang, J. Cao, M. Zhou, Efficient separation of chromium and vanadium by calcification roasting-sodium carbonate leaching from high chromium vanadium slag and V2O5 preparation, Sep. Purif. Technol. 230 (2020) 115881. [28] J. Wen, T. Jiang, T.X. Yu, B.J. Chen, L. Li, Clean and efficient extraction of vanadium from vanadium slag: Effect of manganese on the phase composition and vanadium extraction process, J. Clean. Prod. 367 (2022) 133077. [29] K.B. Luo, H.P. Li, C.M. Li, P. Ning, Influence of the process parameters on the formation of CaSO4·0.5H2O whiskers, J. Nanomater. 2013 (1) (2013) 906267. [30] G. Silversmit, D. Depla, H. Poelman, G.B. Marin, R. De Gryse, Determination of the V 2p XPS binding energies for different vanadium oxidation states (V5+ to V0+), J. Electron. Spectrosc. Relat. Phenom. 135 (2-3) (2004) 167-175. [31] L.N. Tang, X.L. Dai, X.L. Lin, S.Q. Zhang, J. Li, Y. Zhan, Y.C. Qian, X.Y. Hu, W.Y. Li, V5O12·6H2O/f-MWCNT/rGO hybrid aerogels as high-performance electrode materials for zinc-ion supercapacitors, Chem. Commun. (Camb) (2025), DOI: 10.1039/d5cc02014j. [32] J. Wen, T. Jiang, W.Y. Zhou, H.Y. Gao, X.X. Xue, A cleaner and efficient process for extraction of vanadium from high chromium vanadium slag: Leaching in (NH4)2SO4-H2SO4 synergistic system and NH4+ recycle, Sep. Purif. Technol. 216 (2019) 126-135. [33] J. Wang, C. Wei, X.B. Li, M.T. Li, Z.G. Deng, H.Y. Li, D.D. Chen, X.J. Zhu, A clean metallurgical process for vanadium precipitation from vanadium-rich solutions, J. Saudi Chem. Soc. 28 (4) (2024) 101901. [34] Z.X. Wu, L. Jiang, Study on vanadium precipitation by hydrolysis of chromium-vanadium solution, Iron Steel Vanadium Titanium 41 (5) (2020) 22-26 (in Chinese). [35] C. Song. Study on comprehensive utilization of chromium-bearing vanadium residue, Central South University, China, 2012. |